Environmental RTDI Programme 2000–2006

WATER FRAMEWORK DIRECTIVE – Characterisation of Reference Conditions and Testing of Typology of Rivers (2002-W-LS-7)

Final Report

Prepared for the Environmental Protection Agency

by

Department of Zoology, University College Dublin

Authors:

Mary Kelly-Quinn, Catherine Bradley, Ian Dodkins, Thomas J. Harrington, Bernadette Ni Chathain, Mark O'Connor, Brian Rippey and David Trigg

ENVIRONMENTAL PROTECTION AGENCY

An Ghníomhaireacht um Chaomhnú Comhshaoil PO Box 3000, Johnstown Castle, Co. Wexford, Ireland

Telephone: +353 53 60600 Fax: +353 53 60699 E-mail: info@epa.ie Website: www.epa.ie © Environmental Protection Agency 2005

ACKNOWLEDGEMENTS

This report has been prepared as part of the Environmental Research Technological Development and Innovation Programme under the Productive Sector Operational Programme 2000–2006. The programme is financed by the Irish Government under the National Development Plan 2000–2006. It is administered on behalf of the Department of the Environment and Local Government by the Environmental Protection Agency which has the statutory function of co-ordinating and promoting environmental research.

Thanks to Martyn Kelly (diatoms), Nigel Holmes (macrophyte training), Richard Lansdown (macrophytes species confirmation) and the Environment & Heritage Service of Northern Ireland.

DISCLAIMER

Although every effort has been made to ensure the accuracy of the material contained in this publication, complete accuracy cannot be guaranteed. Neither the Environmental Protection Agency nor the author(s) accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting, or refraining from acting, as a result of a matter contained in this publication. All or part of this publication may be reproduced without further permission, provided the source is acknowledged.

ENVIRONMENTAL RTDI PROGRAMME 2000-2006

Published by the Environmental Protection Agency, Ireland

ISBN: 1-84095-161-3

Details of Project Partners

Catherine Bradley

(Macroinvertebrates, Hydrochemistry) Department of Zoology University College Dublin Belfield, Dublin 4 Ireland

Tel: +353 1 7162339 E-mail: catherine.bradley@ucd.ie

Ian Dodkins

(Macrophytes, Hydromorphology, Typology) School of Environmental Sciences University of Ulster Cronmore Road Coleraine, BT52 1SA Northern Ireland

Tel: +44 28 7032 4864 E-mail: IR.Dodkins@ulster.ac.uk

Bernadette Ní Chatháin

(Phytobenthos) Department of Life Sciences Schrödinger Building University of Limerick Limerick Ireland

Tel: +353 61 337914 E-mail: bernadette.nichathain@shannonrbd.com

David Trigg

(Artificial Intelligence) Centre for Intelligent Environmental Systems (CIES) Staffordshire University School of Computing The Octagon, Beaconside Stafford, ST18 0DG, UK

Tel: +44 1785 353445 E-mail: D.J.Trigg@staffs.ac.uk

Other Contributors:

Mary Kelly-Quinn (Project Co-ordinator)

(Macroinvertebrates, Hydrochemistry) Department of Zoology University College Dublin Belfield, Dublin 4 Ireland

Tel: +353 1 7162337 E-mail: mary.kelly-quinn@ucd.ie

Brian Rippey (Principal Investigator)

(Macrophytes, Hydromorphology) School of Environmental Sciences University of Ulster Cronmore Road Coleraine, BT52 1SA Northern Ireland

Tel: +44 28 7032 4864 E-mail: BHRT.Rippey@ulst.ac.uk

Thomas J. Harrington (Principal Investigator)

(Phytobenthos) Department of Life Sciences Schrödinger Building University of Limerick Limerick Ireland

Tel: +353 61 202906 E-mail: thomas.harrington@ul.ie

Mark O'Connor (Principal Investigator)

(Artificial Intelligence) Centre for Intelligent Environmental Systems (CIES) Staffordshire University School of Computing The Octagon, Beaconside Stafford, ST18 0DG, UK

Tel: +44 1785 353445 E-mail: m.a.oconnor@staffs.ac.uk

Jan-Robert Baars (Macroinvertebrates, hydrochemistry), UCD Juliet McCarthy (Phytobenthos), UL Trudi Walsh (Phytobenthos), UL Deirdre Tierney (Simuliidae & Coleoptera), UCD Wayne Trodd (Oligochaeta), UCD Evelyn Moorkens & Associates (Mollusca) & Ian Killeen (Mollusca), Malacological Services

Table of Contents

Ac	know!	ledgements	ii
Di	sclaim	ler	ii
De	tails o	of Project Partners	iii
Ex	ecutiv	ve Summary	vii
1	Intro	oduction	1
	1.1	Sites Surveyed	1
2	Samj	pling Procedures	3
	2.1	Macroinvertebrates	3
	2.2	Phytobenthos	3
	2.3	Macrophytes	4
	2.4	Hydrochemistry	5
	2.5	Hydromorphology	5
3	Verif	fication of Ecological Status	6
	3.1	Macroinvertebrates	6
	3.2	Phytobenthos	6
	3.3	Macrophytes	11
	3.4	Hydrochemistry	12
	3.5	Hydromorphology	16
	3.6	Reference Site Validation Summary	17
	3.7	Artificial Intelligence	18
4	Туро	blogy Production	19

	4.1	Combining Taxonomic Data	19
	4.2	Developing the CCA Typology	19
	4.3	Typologies Derived from Permutation Tests	20
5	Asse	ssing Typology Performance	25
	5.1	Introduction	25
	5.2	Methods	25
	5.3	Results	25
	5.4	Discussion	26
	5.5	Additional Comments	26
	5.6	Conclusions and Recommendations	26
	5.7	Recent Developments	26
6	Com	position of Biological Elements within River Types	28
Re	ferenc	es	31
Aŗ	pendi	x Species Frequencies for Each River Type	33

Executive Summary

To fulfil the obligations of the Water Framework Directive, a river typology within Ecoregion 17 had to be produced. The objective of this study was to survey 50 sites within the Republic of Ireland that had been previously classified as high quality by the Irish EPA, to determine whether they were of high ecological status (and thus could be used as reference conditions) and to use these spatial reference sites to develop the river typology.

The biological elements (macroinvertebrates, phytobenthos and macrophytes) were surveyed at all 50 sites during 2002/2003. Chemistry (ammonia, phosphate, nitrate, nitrite, hardness, alkalinity, dissolved oxygen, pH, temperature, calcium, magnesium, potassium, chloride and sulphate) and basic hydromorphological variables (sediment, bank slope, etc.) were measured during the same period to ensure reference status. Q-values, TDI and MTR scores were applied to the biological elements to judge reference status, although it was acknowledged that these methods may not be appropriate since different river types cannot be directly compared using these measures.

Potential deviations from reference status were identified by the biological elements, chemistry and

hydromorphology at 23 sites, although coincidence of impact indication from the different elements only occurred at six sites. Agreement of a biological response with chemistry only occurred at one site (MOY2). Despite potential minor impacts, it was considered that the development of the typology would suffer more from the omission of river types than from the effect of the potential impacts. Thus, no sites were excluded, though the status of MOY2 and OGLIN1 should be reviewed in future developments.

Several typologies were developed from this dataset: Expert based, Canonical Correspondence Analysis (CCA) based, the WFD System A Typology, and typologies developed from permutations of different environmental variables and variable boundaries. The permutation-based typologies best segregated the biological elements across all groups, and with combined biological data. A 12-category permutation-based typology was recommended as the best typology, and has now been accepted by the EPA. Categorisation of the 50 sites, indicator species, and the frequency of different species are shown for the 12 different river types within this typology.

1 Introduction

The Water Framework Directive (WFD) requires Member States to measure the ecological status of surface waters by comparison of monitoring sites with unimpacted reference conditions specific to that river or lake type. Reference conditions must be of high ecological status and thus show "*no, or only very minor, evidence of distortion*" (Council of the European Communities, 2000). Ecological status for biological quality elements is to be a measure of "*changes in the composition and abundance*" of different taxonomic groups.

The RIVTYPE project addressed the development of reference conditions and a typology for rivers within the Republic of Ireland (part of Ecoregion 17). The specific objectives were:

1. To describe the composition and abundance of the macroinvertebrate, macrophyte and phytobenthos

communities of 50 potential reference river sites, which were designated by the EPA.

- To verify that these sites are of high biological, chemical and hydromorphological status and thereby could be used as reference conditions.
- To determine and validate a river typology. River types should have distinct biological communities and a range of environmental variables which would be expected under unimpacted conditions.

1.1 Sites Surveyed

Fifty potential reference sites, which were likely to be of high ecological status, were selected by the EPA for macroinvertebrate, phytobenthos and macrophyte surveys. The locations of these sites are shown in Fig. 1.1 and Table 1.1 provides the Irish grid references.

Figure 1.1. Location of the 50 potential reference sites chosen by the EPA.

EPA code	River name	Location	Site code	IGR
09D010010	Dodder	1.3 km u/s Reservoir u/s distributary	DODDE1	O11015 20233
09L010250	Liffey	0.5 km d/s Ballyward Br.	LIFFY1	O02276 16126
10G010200	Glencree	Bridge u/s Dargle River confl	GCREE1	O20272 14884
10G050100	Glenealo	Ford u/s Upper Lake	GNEAL1	T08822 96227
12L020100	Little Slaney	Ford S of Coan	LSLAN1	S98485 91766
12L020400	Little Slaney	Ford d/s Rostyduff Br.	LSLAN2	S94946 92339
12S020400	Slaney	Waterloo Br.	SLANY1	S90222 93468
12U010050	Urrin	Ballycrystal Br.	URRN1	S86396 48578
18F050030	Funshion	Brackbaun Br. – NE of Kilbeheny	FUNSH1	R88965 16817
19S020400	Sullane	Linnamilla Br.	SULLA1	W31293 72793
21B030100	Blackwater (Kerry)	Gearha Br.	BLKWA1	V78267 72138
21G030100	Glengarriff	Bridge W of Skehil	GGARF1	V89708 58327
22C020600	Caragh	Blackstones Br.	CARAG1	V70947 86350
22F020100	Flesk (Kerry)	Bridge nr Glenflesk – Curreal Br.	FLESK1	W06619 85385
22F040100	Finow	Bridge 0.3 km u/s L. Guitane – Finow Br.	FINOW1	W01152 85692
220030400	Owenreagh	Bridge u/s Upper Lake (Lord Brandon's cottage)	OREAG1	V88412 82085
230030300	Owenmore (Kerry)	Bridge at Boherboy	OMORE1	Q51307 10690
25B030080	Bilboa	Bridge u/s Blackboy Br. – Bilboa Br.	BILBO1	R81537 51863
25B100100	Bow	Bow River Br.	BOW1	R66568 87096
25D070400	Duniry	Just u/s Cappagh River confl, SW of Duniry	DUNIR1	M72142 09014
25G040025	Graney (Shannon)	Caher Br., S of L. Graney	GRANE1	R55410 90143
25G210010	Camcor	Bridge 3 km E of Longford	CAMCO1	N20100 01428
25N020060	Newport (Tipperary)	Bridge nr Glanculloo Old School	NPORT1	R83753 68327
27B020300	Broadford	Just u/s South Branch confl – Scott's Br.	BROAD1	R61044 72104
27G020600	Gourna	Bridge u/s Owenogarney River confl	GOURN1	R48104 64137
27S030200	Spancelhill	Bridge NW, near Spancelhill	SHILL1	R38640 80848
28C010200	Caher (Clare)	Bridge 2 km d/s Formoyle	CAHRE1	M16322 08228
28G020200	Glendine (Clare)	Knockloskeraun Br., S of Milltown Malbay	GDINE1	R05316 77429
29B040300	Boleyneendorrish	Bridge N of Doonally West – Kenny's Br.	BOLND1	M51419 05626
290010700	Owendalulleegh	Ford at Inchamore, N of L. Graney	OWDAL1	R56160 99594
30A020110	Aille (Mayo)	Bridge NW of Claureen – E of Killavally	AILLE1	M12252 80132
320030200	Owenglin	Bridge SW of Clifden Lodge	OGLIN1	L67737 50422
33K010200	Keerglen	Bridge NE of Doondragon	KEERG1	G09386 33317
34B080300	Behy (North Mayo)	Bridge SW of Oatlands House	BEHYM1	G32513 17108
34C050030	Clydagh (Castlebar)	Bridge u/s confl of East Branch	CLYDA1	M14276 96564
34M020100	Моу	Bridge SE of Cloonacool	MOY1	G49380 16842
34M020750	Моу	At Bleanmore	MOY2	G26177 00854
34O030050	Owengarve (Sligo)	Ford NW of Srah Upper	OWGAR1	G55121 03986
35B060010	Bonet	Bridge u/s Glenade Lough	BONET1	G82228 47138
35D060100	Dunneill	Bridge 2 km u/s Dromore West	DUNNE2	G43769 32718
35D060200	Dunneill	Donaghintraine Br.	DUNNE1	G43852 34411
35G030100	Gowlan (Sligo)	Ford u/s Easky River confl	GOWLA1	G38816 26532
350010070	Owenbeg (Coolaney)	700 m u/s Ford SW Shancough (Bridge)	OWBEG1	G56983 23193
36S010100	Swanlinbar	Commas Br. (Br. nr Altbrean/Tullydermot)	SWANL1	H14890 24876
37E020150	Eanymore Water	Bridge SW of Letterbarra	EANYM2	G88298 82357
37E020250	Eanymore Water	Eanymore Br.	EANYM1	G84570 81582
37E030300	Eany Water	Just d/s Eany Beg/More confl	EANYW1	C84054 81396
38C060100	Cronaniv Burn	Bridge u/s Dunlewy Lough	CBURN1	B92899 18963
38G020100	Gweebarra	Pollglass Br.	GWBAR1	B94839 13968
40B010200	Ballyhallan	Bridge u/s Clonmany River	BHALL1	C36887 46019

Table 1.1. Irish Grid References (IGR) of the 50 potential reference sites.

2 Sampling Procedures

2.1 Macroinvertebrates

2.1.1 Sampling method

Macroinvertebrate samples were taken at each of the 50 sites in autumn (9 October 2002 to 29 November 2002), spring (10 February 2003 to 19 March 2003) and summer (3 June 2003 to 3 July 2003). Due to flooding in the autumn of 2002, additional samples were taken in the following autumn (7 and 8 October 2003).

Macroinvertebrates were collected using a 3-min, multihabitat kick-sampling technique (Wright, 1995). This involved surveying a 50-m reach for different habitat types – riffle, glide, pool, backwater, vegetated area and margin. The time allotted to sampling each habitat type depended upon the percentage representation of each in the 50-m reach. Habitats contributing less than 5% of the stable habitat in the reach were generally not sampled (Barbour *et al.*, 1997). Three replicate samples were collected, labelled and preserved in 70% alcohol. Hand searches were also undertaken to provide intact specimens for species confirmation.

2.1.2 Laboratory procedures

In the laboratory, samples were sieved through an 850µm sieve and transferred to a white tray. All macroinvertebrates were removed and stored in labelled glass tubes containing 70% alcohol. The macroinvertebrates were counted and identified to the lowest possible taxon using standard Freshwater Biological Association (FBA) identification keys. Species/ genus-level identification was achieved for all groups with the exception of some dipteran larvae and immature Oligochaeta.

2.2 Phytobenthos

Benthic diatoms were sampled and analysed following draft CEN methododologies (EN 13946, 2002; prEN 14407, 2003). Macroalgal sampling also followed draft CEN guidelines (CEN/TC230/WG2/TG3, 2003). All three draft guidelines have since been updated (but not yet accepted) (EN 13946, 2003; CEN/TC230/WG2/TG3, 2004; EN 14407, 2004).

2.2.1 Sampling method Diatoms

Diatoms were sampled from cobbles which were free from sediments and filamentous algal growths. Benthic diatoms were removed from approximately five cobbles at each site by brushing with a toothbrush and washing with distilled water into a plastic tray. Up to ten cobbles were sampled on some occasions when the sample appeared to be too dilute. The bulk sample from each site was stored in a plastic tube. Each sample was oxidised in the laboratory with concentrated sulphuric acid, oxalic acid and potassium permanganate. The resulting diatom solutions were mounted onto glass microscope slides using Naphrax® (RI = 1.7, Northern Biological Supplies, UK).

The guidance standard on the identification, enumeration and pre-treatment of benthic diatoms (prEN 14407, 2003) recommends that 300–500 diatom units (valves in this case) are enumerated for diatom surveys. It was decided after preliminary examination of the diatom component to enumerate 500 diatom valves due to the dominance of one particular taxon. This ensured that the chance of encountering rarer species would be increased. One permanent diatom slide was prepared for each river site sampled in each season. Identifications of prepared diatoms were made primarily with the monographs of Krammer and Lange-Bertalot (1986, 1988, 1991a,b).

Counting also followed the draft CEN standard (prEN 14407, 2003):

- Random fields of view were chosen using the vernier scales on the microscope and counted in traverses. Diatoms valves that were more than half in view at the edges of a field of view were counted, while those with less than half the valve in view were not counted. Broken valves were included if approximately three-quarters of the valve were present.
- Treatment of unidentifiable diatoms: a diatom may be difficult to identify for a number of reasons, including orientation in girdle view, and the presence of obscuring material and overlapping valves. If many valves were obscured, more dilute

suspensions were prepared, or the sample was reoxidised. Unidentified girdle views were recorded at the lowest taxonomic level to which they could be assigned with confidence (e.g. '*Achnanthes* sp. 1' or 'unidentified, pennate girdle view').

3. Photographs of identified and unidentified species were also taken and recorded for future reference. Characteristics such as shape and dimensions of the diatom, striae density and arrangement (at centre and poles), shape and size of central area, number and position of punctae and arrangement of raphe endings were recorded. Taxonomic verification was sought for a number of diatom slides (see Acknowledgements).

Macroalgae

All visible algae in a 20-m stretch at each site were collected and preserved in Lugol's iodine in plastic tubes. Algae from both depositing and eroding habitats were included. The recent draft standard recommends that samples be collected from the permanently submerged zone in the main flow of the river and that the flood zone should be avoided. A visual estimate of the percentage abundance of visible macroalgae was made in the field using a six-point scale (Table 2.1) and detailed notes on the appearance, colour and abundance of the visible macroalgae were made at each site. The composition of the macroalgal assemblage, primarily to genus level, was determined by microscopic examination of preserved samples in the laboratory using manuals by John et al. (2002), Whitton et al. (2002, 2003) and Wehr and Sheath (2003). In the laboratory, a semi-quantitative estimate of the abundance of phytobenthos (minus the diatoms) was also carried out based on the six-point scale. Filamentous algae are well known as being difficult to identify to species level. As a result, operational taxa were employed in this study, identifying taxa to genus level and also defining filament width. A similar approach has been adopted in other studies (Kinross et al., 1993).

Table	2.1.	Abundance	scale	estimates	for
macroa	algae (CEN, 2003b).			

Scale	Abundance	% Cover in the field
1	Occasional	<1%
2	Rare	1–5%
3	Common	5.01-10%
4	Abundant	10.01–25%
5	Very abundant	25.01–50%
6	Dominating	>50%

2.3 Macrophytes

2.3.1 Sampling method

Macrophyte surveying followed the draft CEN standard (CEN, 2002), which has now been accepted (CEN, 2003a). The survey included all aquatic vascular plants, bryophytes, Characeae and macroalgae. They were surveyed at all locations at or below the normal water level. Also, bank species which are strongly influenced by the river channel were separately recorded. Cover was recorded as categories in accordance with CEN guidelines (Table 2.2).

Table 2.2. Macrophyte cover categories (CEN,2003a).

Value	Visual cover estimate (% of channel or bank)
0	0
1	<0.1
2	0.1–1
3	1–5
4	5–10
5	>10

The sites were assessed by surveying two 50-m lengths along representative sections of the channel. One stretch, where possible, coincided with the invertebrate sampling location and one was nearby, but at a section which appeared to have a different character. Often these two stretches covered each of a pool/riffle or an open/shaded reach. Sites where physical impact was evident were avoided and sections with a more natural character located up or downstream were selected (although the distance between the stretches was short enough to ensure that they were of similar altitude, had similar chemistry and did not have interceding tributaries).

All sites permitted wading, although this was restricted to shallow areas near the bank for a few deep-water sites. The sampling season was from June to August (inclusive) although there was a minor overrun into September. River flows tended to decrease throughout this period. Reduced visibility due to heavy rainfall and subsequent high flows was not a problem during this survey period. Low flows permitted high visibility, especially of mosses in large rivers, where they are usually less obvious.

A species survey sheet, organised by habitat type, was used to record species although additional aquatic macrophytes were recorded. Vouchers were retained for laboratory identification on the rare occasions where field identification was not possible, particularly with *Ranunculus* spp. Taxonomic confirmations were sought for certain species (see Acknowledgements).

Macrophyte data for channel and bank species were combined for subsequent analyses. Bank species cover was estimated as a percentage of the bank to be regularly (more than annually) flooded and it was believed that certain bank species could aid with the identification of hydromorphological impacts if their low reliability is downweighted, e.g. in methods such as CBAS (Dodkins *et al.*, 2005). Bank species were also considered to be an important aspect of the riverine ecology.

2.4 Hydrochemistry

2.4.1 Sampling method

In order to validate the chemical and pollution status of each site it was decided that at least two sets of chemical analyses would be completed per site. Physico-chemical measurements such as water temperature, dissolved oxygen, % oxygen saturation, pH and conductivity were recorded in the field using automatic probes.

Water was collected in 1-litre polyethylene bottles, which were pre-rinsed with water from the site prior to sample collection. Two separate snap-cap vials were filled with water for anion and cation analyses. In the laboratory, analyses for alkalinity, total hardness, cations: sodium (Na⁺), magnesium (Mg²⁺), calcium (Ca²⁺) and potassium (K⁺), anions: sulphate (SO₄²⁻), chloride (Cl⁻) and nitrate (NO₃⁻) and nutrients: orthophosphate, ammonia, nitrite and nitrate were carried out using the methodologies listed in Table 2.3.

2.5 Hydromorphology

2.5.1 Sampling method

Hydromorphological survey methods were not developed time so instead simple hydromorphological in observations were recorded in the field. All variables were estimated by eye and therefore accuracy may be low. The hydromorphological survey locations coincided with the macrophyte monitoring locations, and therefore were also conducted along two representative 50-m stretches at each site. Physically impacted stretches were avoided. The data collected in the field included shade (four categories), connection with bank (bank slope; five categories), estimated stream power (nine categories) and mean substrate diameter (phi scale). Additional hydromorphological and geographical data were derived from Geographical Information Systems and provided by the EPA and Compass Informatics. These included slope, distance from source, altitude, catchment area, stream order and valley slope.

Table 2.3. Standard methods used for chemical analysis.

Parameter	Units	Method
Temperature	°C	Thermistor
Conductivity	µS/cm	Electrometric
Dissolved oxygen	mg/l O ₂	Electrometric
Oxygen saturation	% Sat.	Electrometric
рН	рН	Electrometric
Alkalinity	mg CaCO ₃ /I	Acid Titration Method
Total hardness	mg CaCO ₃ /I	Calculation
Total ammonia	mg N/I	Colorimetry (Phenol-Hypochlorite Method)
Nitrate	mg N/l	Dionex (Filtered)
Nitrite	mg N/I	Colorimetry (Sulphanilamide–N-1-Naphthylethyenediamine Dihydrochloride Method)
Orthophosphate	mg P/l	Colorimetry (Ascorbic Acid Method)
Chlorinity	mg Cl⁻/l	Dionex
Sulphate	mg SO ₄ ^{2–} /I	Dionex
Calcium	mg Ca ²⁺ /I	Dionex
Magnesium	mg Mg ²⁺ /I	Dionex
Sodium	mg Na ²⁺ /I	Dionex
Potassium	mg K ⁺ /I	Dionex

Note: all samples for Dionex analyses were filtered.

3 Verification of Ecological Status

3.1 Macroinvertebrates

Q-values were assigned to all sites for each season (Tables 3.1, 3.2 and 3.3). The majority of sites scored a Q5 value indicating that these sites were of good or excellent quality. Seasonal differences were obvious at some sites.

In autumn, the number of Class A scoring taxa (genus level) ranged from three (AILLE1, CARAG1) to 11 (GGARF1). Only one Class A taxon was observed at OGLIN1 in autumn 2003, whereas four taxa were observed at this site in the previous autumn but in low numbers (eight). Sites BLKWA1 and OWDAL1 both had ten Class A taxa. The percentage abundance of Class A taxa varied between the sites, ranging from 0.11% (OGLIN1) to >60% abundance at sites such as CAMCO1, FUNSH1 and DODDE1. Class A abundance at 18 of the 50 sites was less than 20% of the total fauna, while ten of those sites had less than 10% Class A representatives.

As expected, the number of Class A taxa increased in spring at most sites, due mainly to the Ephemeroptera. The number of taxa ranged from five (AILLE1) to 12 (MOY1). Forty-three of the sites had at least six Class A taxa. Five sites, including FLESK1, GOWLA1, KEERG1, OWGAR1 and MOY1, had at least ten Class A scoring taxa. The percentage abundance of Class A taxa ranged from 0.80% (AILLE1) to >50% (FUNSH1 and DODDE1). Thirteen of the sites had less than 10% total Class A taxa representation.

In the summer, the total Class A taxa recorded ranged from two (EANYM1, EANYW1) to ten (DODDE1). Only one Class A taxon was again observed at OGLIN1. Furthermore, a lower percentage abundance of Class A taxa was recorded, ranging from 0.17% (AILLE1) to 38% (BROAD1). Thirty-three of the 50 sites had less than 10% Class A abundance, while 20 of these sites had less than 5% representation of Class A taxa.

In summary, the majority of sites scored a Q5 value indicating that these sites were of good quality. Several sites deviated slightly from the expected Q5 status during some sampling seasons. Site AILLE1 always exhibited a low percentage abundance of Class A taxa, although at

least three taxa were observed in each season (five in spring) resulting in a Q4-5 score. Five sites (CARAG1, EANYM1, EANYW1, FINOW1 and OREAG1) were given a Q4-5 in the summer season due to low percentage abundances of Class A taxa and/or in some sites where less than three Class A taxa occurred. The status of the biological community at the OGLIN1 site remains questionable. Here, the Q-values ranged from Q4-5 (autumn 2002) to Q5 in spring 2003, falling to Q4 in the summer and to the lowest value (Q3-4) in autumn 2003. The difficulty associated with taking kick-samples at this site may have contributed in part to the low scores. However, additional information obtained from discussions with Martin McGarrigle, EPA, and Fiona Kelly, Central Fisheries Board, lead to the conclusion that this site may be deviating from reference condition.

3.2 Phytobenthos

To assess ecological status the Trophic Diatom Index (TDI) (Kelly and Whitton, 1995; Kelly *et al.*, 2001) was used. There are three drawbacks to this method: (i) it utilises only the diatom component of the phytobenthos, (ii) it was designed for the purposes of the Urban Waste Water Treatment Directive and may not be valid in less nutrient-rich rivers, and (iii) it was developed in the UK and may not be applicable to Ireland. However, as there are no complete phytobenthos methods available in Europe and there is no equivalent to the TDI in Ireland, this was the best available method for indicating departure from reference status.

The DARES project (Diatom Assessment of River Ecological Status – Environment Agency (England and Wales), the Scottish Environmental Protection Agency, Bowburn Consultancy, the Natural History Museum, and the Universities of Bristol, Newcastle and Ulster) is evaluating past diatom collections on the basis of the TDI and has so far agreed that good status sites have a TDI score between 0 and 50 and impacted sites have a TDI score between 50 and 100 (Dr Martyn Kelly, Bowburn Consultancy, personal communication).

The TDI was applied to the combined spring and summer diatom data set. Results are presented in Table 3.4. Five sites had low diatom species richness and density,

Site	% of sco	oring taxa in	each class (Number o	f Class A:	Q-value		
	Α	В	С	D	E	Species	Genera	
ILLE1	0	2	93	1	0	3	3	Q4–5
EHYM1	22	2	73	0	0	7	7	Q5
HALL1	12	14	71	0	0	4	4	Q5
ILBO1	25	4	69	0	0	9	8	Q5
LKWA1	19	9	49	1	1	10	10	Q5
OLND1	26	8	64	1	0	8	8	Q5
ONET1	37	6	55	0	0	8	8	Q5
OW1	38	6	56	0	0	8	7	Q5
ROAD1	45	7	44	1	0	8	8	Q5
AHER1	7	12	63	0	0	5	5	Q5
AMCO1	65	11	21	0	0	8	8	Q5
ARAG1	5	14	77	1	0	3	3	Q5
ARAG1A2*	9	12	75	3	0	4	4	Q5
BURN1	25	26	37	0	0	9	7	Q5
LYDA1	30	12	54	0	0	7	7	Q5
ODDE1	68	9	20	0	0	7	7	Q5
UNIR1	11	18	65	1	1	10	9	Q5
UNNE1	3	2	95	0	0	6	6	Q5
UNNE2	5	3	89	0	0	8	8	Q5
ANYM1	12	7	72	1	0	8	7	Q5
ANYM2	4	7	83	0	0	8	7	Q5
ANYW1	8	10	66	1	10	7	6	Q5
NOW1	9	19	58	2	0	7	7	Q5
LESK1	° 7	9	79	1	0	10	9	Q5
JNSH1	67	6	24	0	0	9	8	Q5
CREE1	46	16	34	0	0	7	7	Q5
DINE1	46 16	7	75	1	1	6	5	Q5
GARF1	28	, 17	50	0	0	12	3 11	Q5
NEAL1	28	29	41	0	0	8	7	Q5
OURN1	6	29 6	83	0	0	8 7	7	Q5 Q5
OWLA1			80					Q5 Q5
RANE1	11	4	51	0 1	0 2	9 8	8 7	Q5 Q5
WBAR1	38 26	6 25	42		2	8 7	7	Q5 Q5
				0				
EERG1	18	4	75	0	0	6	6	Q5
IFFY1 SLAN1	35	4	54	0	0	8 7	7	Q5
	53	9	36	0	0		7	Q5
SLAN2	32	14	48	0	0	6	6	Q5
IOY1	19	6	71	0	1	8	8	Q5
IOY2	6	4	88	1	0	7	7	Q5
PORT1	30	10	54	2	0	9	8	Q5
GLIN1	1	17	72	1	0	4	4	Q4–5
GLIN1A2*	0	5	81	1	1	1	1	Q3–4
MORE1	4	6	85	3	0	8	8	Q5
REAG1	5	15	68	2	0	8	7	Q5
WBEG1	27	4	65	0	0	9	9	Q5
WDAL1	12	16	69	0	0	10	10	Q5
WGAR1	7	5	85	1	0	9	8	Q5
HILL1	10	5	81	2	0	5	5	Q5
LANY1	7	6	69	1	0	6	6	Q5
ULLA1	19	7	70	1	0	9	9	Q5

Table 3.1. Autumn EPA Q-value ratings at the potential reference sites (Q-value scores less than Q5 are highlighted in bold).

44 *Indicates the scores for the additional autumn sample at this site.

6

46

SWANL1

0

0

8

7

Q5

Site	% of scoring taxa in each class (zero decimal places)					Number o	Q-value	
-	Α	B	С	D E	E	Species	Genera	
AILLE1	1	6	90	0	0	5	5	Q4–5
BEHYM1	12	9	77	0	1	10	10	Q5
BHALL1	12	18	65	1	0	8	8	Q5
BILBO1	20	7	71	0	1	8	8	Q5
BLKWA1	5	10	72	1	1	8	8	Q5
BOLND1	40	4	52	1	0	11	10	Q5
BONET1	42	7	50	0	0	10	10	Q5
BOW1	47	5	47	1	0	9	9	Q5
BROAD1	27	12	54	3	3	9	9	Q5
AHER1	19	15	53	0	0	6	6	Q5
CAMCO1	47	11	41	0	0	10	10	Q5
CARAG1	6	21	66	0	0	7	7	Q5
BURN1	23	26	45	0	0	10	9	Q5
CLYDA1	21	10	67	0	0	8	8	Q5
ODDE1	63	13	22	0	0	10	10	Q5
DUNIR1	25	16	55	2	1	8	8	Q5
OUNNE1	10	4	84	0	0	7	7	Q5
OUNNE2	4	4	91	0	0	10	10	Q5
ANYM1	15	15	56	1	1	10	10	Q5
EANYM2	9	7	76	2	2	10	10	Q5
ANYW1	10	, 14	70	1	1	8	8	Q5
INOW1	10	26	41	5	0	8	8	Q5
LESK1	4	10	78	1	2	11	11	Q5
UNSH1	4 57	6	36	0	0	10	10	Q5
	57 44		30 46	0	0	8	8	
		8						Q5
DINE1	32	5	58	0	0	10	10	Q5
GARF1	22	10	57	5	6	6	6	Q5
SNEAL1	21	24	54	0	0	10	10	Q5
OURN1	16	4	76	1	1	6	6	Q5
GOWLA1	8	8	80	0	2	11	11	Q5
GRANE1	35	10	54	0	0	9	9	Q5
SWBAR1	21	11	60	0	0	8	8	Q5
KEERG1	17	6	76	0	0	11	11	Q5
.IFFY1	27	5	66	0	0	9	9	Q5
SLAN1	38	8	50	0	0	10	10	Q5
SLAN2	38	12	48	0	0	7	7	Q5
IOY1	23	10	62	0	3	12	12	Q5
IOY2	2	4	88	4	0	8	8	Q5
IPORT1	21	8	67	1	1	8	8	Q5
OGLIN1	2	7	85	0	1	8	8	Q5
MORE1	2	7	84	1	0	7	7	Q5
REAG1	5	7	70	2	2	9	9	Q5
WBEG1	35	6	56	0	2	10	9	Q5
WDAL1	13	6	78	0	1	10	10	Q5
WGAR1	14	3	79	0	1	11	11	Q5
HILL1	12	7	78	3	0	6	6	Q5
SLANY1	7	1	64	0	5	7	7	Q5
SULLA1	15	11	60	1	1	10	10	Q5
SWANL1	40	7	51	0	0	10	10	Q5

Table 3.2. Spring EPA Q-value ratings at the potential reference sites (Q-value scores less than Q5 are highlighted in bold).

Site	% of sco	oring taxa in	each class (Number o	f Class A:	Q-value		
	Α	В	С	D	E	Species	Genera	
ILLE1	0	1	97	0	0	5	4	Q4–5
EHYM1	6	8	79	0	0	7	6	Q5
HALL1	3	22	74	0	0	4	3	Q5
ILBO1	9	2	85	0	0	5	4	Q5
LKWA1	5	3	88	0	0	4	4	Q5
OLND1	12	3	83	1	0	6	5	Q5
ONET1	23	20	56	0	0	8	8	Q5
OW1	17	2	78	1	0	6	5	Q5
ROAD1	38	1	57	1	0	6	6	Q5
AHER1	3	22	62	0	0	4	4	Q5
AMCO1	12	6	74	0	0	9	7	Q5
ARAG1	1	3	95	1	0	3	3	Q4–5
BURN1	9	12	67	0	0	6	6	Q5
LYDA1	17	13	66	0	0	7	7	Q5
ODDE1	14	14	71	0	0	10	10	Q5
UNIR1	10	13	73	0	0	5	4	Q5
UNNE1	7	3	87	0	0	5	4	Q5
UNNE2	6	7	82	0	0	4	3	Q5
ANYM1	5	11	82	0	0	3	2	Q4–5
ANYM2	4	5	89	0	0	6	5	Q5
ANYW1	1	8	89	0	0	2	2	Q4–5
INOW1	1	8	83	0	0	3	3	Q4–5
LESK1	1	8	90	0	0	7	5	Q5
UNSH1	24	3	69	0	0	8	8	Q5
CREE1	6	5	86	0	0	7	7	Q5
DINE1	11	11	76	0	0	8	8	Q5
GARF1	11	4	83	2	0	3	3	Q5
NEAL1	9	13	73	0	0	8	8	Q5
OURN1	6	5	86	0	0	7	6	Q5
SOWLA1	5	4	88	0	0	6	4	Q5
RANE1	12	4	82	1	0	7	7	Q5
WBAR1	5	19	68	0	0	5	5	Q5
EERG1	12	7	79	0	0	7	5	Q5
IFFY1	9	9	73	2	0	8	7	Q5
SLAN1	10	4	76	0	0	9	8	Q5
SLAN2	3	5	88	0	0	7	6	Q5
IOY1	3	2	94	0	0	6	6	Q5
IOY2	3	7	87	0	0	6	5	Q5
IPORT1	6	4	88	1	0	7	6	Q5
IGLIN1	8	1	89	0	0	1	1	Q4
MORE1	2	2	93	0	0	6	5	Q 5
REAG1	1	6	89	1	1	5	5	Q4–5
WBEG1	4	3	89 91	0	0	6	5	Q4=5 Q5
WBEGI WDAL1	4 15	6	91 77	0	0	6	6	Q5 Q5
WGAR1	8	6	82	0	0	5	6 4	Q5 Q5
HILL1	8	6 7	82 86	0	0	5 7		Q5 Q5
							6	
	2	2	93	0	0	5	4	Q5
SULLA1	13	4	82	0	0	7	7	Q5

Table 3.3. Summer EPA Q-value ratings at the potential reference sites (Q-value scores less than Q5 are highlighted in bold).

Q5

SWANL1

Table 3.4. Results for the Trophic Diatom Index.

River	TDI	Comments
AILLE1	50	
BHALL1	28	
BEHYM1	30	
BILBO1	53	Achnanthidium minutissimum 51%. Gomphonema minutum and Gomphonema olivaceum reached 7.8% and 8.5% in spring and summer, respectively
BLKWA1	31	Compromenta onvaceum reached 7.0% and 0.5% in spring and summer, respectively
	56	A. minutissimum 47%. Navicula lanceolata 16%. Gomphonema parvulum 5%
BOLND1 BONET1		A. minuussimum 41 %. Navicula lanceolala 10%. Gomphonema parvulum 5%
BONET1	37	A minutianimum 400/ AL langestate 200/
BOW1	63 *	A. minutissimum 40%. N. lanceolata 29%
BROAD1	*	
CAHRE1		
CAMCO1	36	
CARAG1	32	
CLYDA1	52	A. minutissimum 48%. Reimeria sinuata 30%
CBURN1	33	
DODDE1	28	
DUNIR1	40	High abundance of <i>C. glomerata</i> in spring and summer
DUNNE1	70	A. minutissimum 16%. G. olivaceum 25% (1 season only)
DUNNE2	43	
EANYW1	33	
EANYM1	30	
EANYM2	34	
FINOW1	26	
FLESK1	29	
FUNSH1	37	
GCREE1	76	G. olivaceum 29% (1 season only)
GDINE1	*	
GNEAL1	21	
GGARF1	27	
GOURN1	72**	Navicula gregaria 16%. A. minutissimum 10% (1 season only)
GOWLA1	28	
GRANE1	71	G. olivaceum 20%. A. minutissimum 13% (1 season only)
GWBAR1	28	
KEERG1	32	
LIFFY1	43	
LSLAN1	29	
LSLAN2	42	
MOY1	33	
MOY2	49	
NPORT1	46	
OWBEG1	29	
OWDAL1	44	
OWGAR1	42	
OGLIN1	25	
OMORE1	33	
OREAG1	27	
SLANY1	67	A. minutissimum 9%. N. lanceolata 14% (1 season only)
SHILL1	*	High abundance of <i>Hildenbrandia rivularis</i>
SULLA1	47	
SWANL1	*	
URRN1	44	

*Indicates river samples with low diatom density such that quantitative counts could not be made and TDI could not be calculated. Underlined sites indicate rivers with questionable high quality status.

precluding the calculation of a TDI value. Rivers with TDI scores of 50 or less were presumed to be of 'good' quality. Rivers with TDI scores greater than 50, and therefore of questionable quality, were BILBO1, BOLND1, BOW1, CLYDA1, DUNNE1, GCREE1, GOURN1, GRANE1 and SLANY1. Sites underlined had TDI scores only slightly above 50, and therefore were considered acceptable. BOW1 scored above 50 in spring but not in summer. For all the other sites, the TDI could not be calculated in summer due to the low density of diatom valves, making a quantitative count impossible. It may be possible that these rivers would score within the acceptable limits in future surveys. All sites were included in the data analysis and the determination of typology, but it is recommended that the status of the sites listed above be reviewed as part of future monitoring.

Little work has been carried out on the use of macroalgae for water quality monitoring. An exception is *Cladophora*, which is tolerant of high nutrient concentrations, and thus an increase in abundance has often been considered to signal eutrophication (Whitton, 1970; Bolas and Lund, 1974), although, at lower population densities, it is a natural component of many water systems (Whitton, 1970). *Cladophora glomerata* was abundant at DUNNE1 during the summer, and attained a high abundance at DUNIR1 in both spring and summer, indicating that both of these sites may be of questionable quality. DUNNE1 also scored above 50 in the TDI. The status of both these sites should be further reviewed.

Filamentous algae including *Spirogyra* spp., *Mougeotia* spp., *Oedogonium* spp. and *Zygnema* spp. did reach high abundance at some of these sites, but there is little evidence of their relationship with water quality. They are

commonly found at the littoral edges of rivers and are favoured by the lower flows and higher water temperatures that prevail during the summer.

The diatom *Didymosphenia geminata*, which forms visible brownish mats, was found in a number of rivers in Donegal, Mayo and Sligo, particularly during summer sampling, but rarely reached over 5% abundance. Although this species thrives in clear, warm, shallow and nutrient-poor water, an increase in its abundance may reduce rearing habitats for salmonids due to changes in invertebrate communities, physical impacts such as gill irritations and clogging, and displacement of fish species (Ministry of Water, Land and Air, British Columbia, 2004).

3.3 Macrophytes

Within Ecoregion 17 (specifically N. Ireland), the Mean Trophic Rank (MTR) (Holmes et al., 1999) has been shown to have only a weak relationship with phosphate: r^2 = 0.239 with a significance of P = 0.1 (Dawson et al., 1999). Also, macrophytes are strongly affected by the physical environment (Haury, 1996; Wilby et al., 1998), which is why the MTR is not recommended when comparing sites that are physically dissimilar (Dawson et al., 1999). In addition, MTR scores would naturally be lower for lowland rivers, and thus cannot be directly compared between different river types. Despite this, MTR values are presented in Table 3.5. The five sites identified in this table as likely to be affected by eutrophication (i.e. having an MTR score below 45) are all lowland sites, below an altitude of 55 m with slopes less than 0.016 m/m (mean slope for the 50 sites being 0.03 m/ m). High silt cover in the channel can falsely suggest eutrophication within the MTR, which is likely to be the case with BROAD1 (100% silt) and SHILL1 (38% silt).

Table 3.5. MTR scores for the 50 sites. Sites in bold have an MTR score below 45 and "*are likely to be affected by eutrophication*" (Holmes *et al.*, 1999).

Site	MTR								
AILLE1	56	CAMCO1	67	EANYW1	64	GRANE1	55	OMORE1	72
BEHYM1	42	CARAG1	74	FINOW1	75	GWBAR1	93	OREAG1	68
BHALL1	58	CBURN1	71	FLESK1	65	KEERG1	59	OWBEG1	78
BILBO1	51	CLYDA1	58	FUNSH1	68	LIFFY1	73	OWDAL1	57
BLKWA1	74	DODDE1	87	GCREE1	74	LSLAN1	77	OWGAR1	57
BOLND1	52	DUNIR1	68	GDINE1	55	LSLAN2	68	SHILL1	40
BONET1	65	DUNNE1	62	GGARF1	67	MOY1	66	SLANY1	73
BOW1	70	DUNNE2	53	GNEAL1	81	MOY2	44	SULLA1	59
BROAD1	30	EANYM1	71	GOURN1	57	NPORT1	53	SWANL1	83
CAHER1	62	EANYM2	57	GOWLA1	59	OGLIN1	44	URRN1	76

Sites MOY2, OGLIN1 and BEHYM1 recorded MTR scores only slightly below 45, and despite being lowland sites they may have minor nutrient impacts and should be considered for review in future studies.

Due to the shortcomings of evaluating the sites with MTR, a site-by-site ecological assessment was also undertaken. It was apparent that *Fuchsia* and *Crocosmia* (Montbretia) were invasive species along many river banks, including many of the reference sites, throughout Ireland. Finding spatial reference sites without these species would be difficult; however, the species were not considered to have had a large effect on the cover of naturally occurring species. These species together with the invasive aliens *Impatiens glandulifera* and *Reynoutria japonica* were removed from the survey data (Table 3.6).

Access to the river channel by cattle and sheep was also evident at many sites (from faeces and hoof prints), and, although attempts were made to avoid these areas, it was not always possible. These sites included GGARF1, GOWLA1, KEERG1, LIFFY1, MOY2 and OWBEG1. The growth of Fontinalis antipyretica at some sites may suggest that some local and mild eutrophication may be occurring (AILLE 1 and OWDAL1). Although some sites had species that may be indicative of eutrophication, this was not supported by the water chemistry data, suggesting that either low summer flows or a localised event resulted in their growth. Despite invasive species and local enrichment, it was considered that all of the chosen sites had only very minor anthropogenic alterations and should be retained within subsequent analyses.

Table 3.6. Impacts on reference sites indicated from the macrophytes; (a) and (b) are each of the two 50-m stretches surveyed at the sites.

Site	Invasive species*
BILBO1a	<0.1% I. glandulifera
BILBO1b	0.1–1% I. glandulifera; 1–5% R. japonica
BOW1a	<0.1% R. japonica
BOW1b	<0.1% R. japonica
BROAD1b	0.1–1% R. japonica
DUNNE2a	Fuchsia
OGLIN1a	Fuchsia, Crocosmia
OGLIN1b	0.1–1% I. glandulifera
OMORE1b	Crocosmia

*Removed from survey data prior to data analysis.

3.3.1 Representativeness of sites

A total of 114 aquatic macrophyte species (not including invasive aliens) were found during this survey and are used in the analyses. To determine whether a sufficient range of species was detected, species from this survey were compared with species lists previously surveyed in Northern Ireland by the Environment and Heritage Service (EHS) and also by Dodkins (2003). Species missing from this survey and suggested reasons why they were missing are listed in Table 3.7.

The absence of several species suggests that the extreme ranges of habitat have not been represented. *Nardia compressa*, characteristic of very acidic areas, did not occur. *Rumex hydrolapathum* and *Potamogeton lucens*, which are both found in lowland calcareous rivers, were also not found. In addition, species that occur in rivers with associated wetlands were not found, i.e. *Menyanthes trifoliata* and *Veronica anagallis-aquatica*. The relatively low number of reference sites may have reduced the chance of finding less common species.

Agrostis stolonifera, Barbarea vulgaris, Cardamine spp., Cirsium palustre, Epilobium hirsutum, Epilobium palustre, Galium palustre and Rhytidiadelphus were not considered sufficiently associated with waterbodies for this survey and were not recorded. Riparian trees (e.g. alder and willow) were also ignored during surveying.

3.4 Hydrochemistry

In order to determine whether these 50 sites represent reference conditions, the chemical status of each was assessed paying particular attention to the level of nutrients: ammonia, nitrite, nitrate and phosphate (McGarrigle *et al.*, 2002).

3.4.1 Ammonia

Total ammonia levels were generally below 0.01 mg/l N for the majority of sites. Nine sites had higher ammonia values ranging from 0.0014 (CAMCO1) to 0.126 mg/l N (EANYW1) mostly occurring on single occasions (Table 3.8). The MOY2 site, however, recorded ammonia values ranging from 0.017 to 0.037 mg/l N on three of the four sampling occasions. However, all of the sites contained less than 0.025 mg/l N as unionised ammonia.

3.4.2 Nitrite and nitrate

Nitrite levels in unpolluted waters are normally low, below 0.01 mg/l N (Flanagan, 1992). Concentrations were below this value at the majority of the sites (Table 3.8) except for

Species missing from survey	Suggested reason for omission
Azolla filiformis	Invasive alien and characteristic of eutrophic waters
Barbarea vulgaris	Not considered sufficiently associated with waterbodies for this survey
Cicuta virosa	
Elodea nuttallii	Characteristic of eutrophic waters
Glyceria maxima	Often on nutrient-rich substrates
Heracleum mantagazzianum	Invasive alien
Hydrocharis morsus-ranae	Tends to exist in ponds
Lemna gibba	Characteristic of eutrophic waters
Lemna polyrhiza	Base-rich lowlands, often eutrophic, not common in the Republic of Ireland
Menyanthes trifoliata	At fringes of slow rivers/lakes
Nardia compressa	Liverwort associated with very acidic conditions
Orthotrichum rivulare	Quite a rare upland moss
Phragmites australis	Associated with slow-flowing lowland areas which don't have a fluctuating water level. Unusual that it wasn't found
Potamogeton gramineus	Found in slow-flowing meso-eutrophic base-rich sites, though not ubiquitous
Potamogeton lucens	Calcareous slow-flowing locations
Ranunculus aquatilis	Still or slow-flowing marginal. Not common in Ireland
Rumex hydrolapathum	Calcareous, slow-flowing locations, though not common in Ireland
Sagittaria sagittifolia	Associated with eutrophic waters
Schistidium alpicola	Moss of basic rocks
Sium latifolium	Lowland, rare in Ireland
Solanum dulcamara	Marginal plant whose omission unlikely to be important
Symphytum officinale	Marginal plant whose omission unlikely to be important
Veronica anagallis-aquatica	Lowland plant of shallow margins

Table 3.7. Species found in N. Ireland surveys but not found within the RIVTYPE survey, with suggested reasons for differences.

EANYW1 (0.0258 mg/l N) where the recommended limit of 0.015 mg/l N set in the Freshwater Fish Directive (78/ 659/EEC) for Salmonid Waters was exceeded on a single occasion. All readings were, however, below the newly proposed limit of 0.061 mg/l N (EPA, 1997). Nitrate is a plant growth promoter and therefore can contribute to eutrophication. Nitrate levels were low, ranging from 1.04 mg/l N (GGARF1) to a moderate 9.08 mg/l N (which was maximum concentration recorded at MOY2).

3.4.3 Phosphate

Phosphate concentrations generally remained below the 0.01 mg/l P detection level at the majority of sites on most occasions (Table 3.8). Twelve sites had phosphate values greater than the Q5 – 0.015 mg/l P limit (EPA, 1997). Seven of these sites (AILLE1, BOLND1, DODDE1, DUNNE1, GDINE1, GOURN1 and OWGAR1) had

phosphate values greater than 0.02 mg/l P on single occasions.

3.4.4 Chemical status of the 50 sites

The majority of sites exhibited a low nutrient content and therefore a high quality chemical status. Most of the higher nutrient readings occurred on single occasions in the summer or autumn 2003 sampling period. Three sites (GDINE1, OWGAR1 and MOY2) in particular may warrant further investigation. The phosphate value at GDINE1 ranged from 0.0409 mg/l P in the summer to 0.0281 mg/l P in the autumn. At the OWGAR1 site, the phosphate value was elevated at 0.0516 mg/l P in the summer while the ammonia value (0.0280 mg/l N) was also high in the autumn 2003 period. Finally, the MOY2 site had high ammonia (0.0333 mg/l N), nitrate (9.08 mg/l N) and phosphate (0.0165 mg/l P) values in the summer sampling period in comparison to the remaining sites. As

Table 3.8. Summary results of nutrients: ammonia, nitrite, nitrate and phosphate^a.

Site		Ammonia	Nitrite	Nitrate	Phosphate	Site		Ammonia	Nitrite	Nitrate	Phosphate
		mg/l N	mg/l N	mg/l N	mg/l P			mg/l N	mg/l N	mg/l N	mg/l P
AILLE1	Mean	0.0031	0.0059	1.77	0.0193	DUNNE1	Mean				
	Min	0.0005	0.002	1.32	0.0055		Min	<0.01	<0.001	<5	<0.01
	Max	0.0083	0.0121	2.32	0.0453		Max	0.0052	0.0085		0.0287
BEHYM1	Mean			6.33		DUNNE2	Mean				
	Min	0.0144	0.0011	4.82	<0.01		Min	<0.01	0.0074	1.31	0.0132
	Max			7.85			Max				
BHALL1	Mean					EANYM1	Mean				
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	<5	<0.01
	Max	0.0022	0.0017		0.0093		Max	0.0049	0.0041		0.0117
BILBO1	Mean			2.69		EANYM2	Mean				
	Min	<0.01	<0.001	2.51	<0.01		Min	<0.01	<0.001	<5	<0.01
	Max	0.0001	0.0006	2.87	0.0028		Max	0.0017	0.0034		0.0115
BLKWA1	Mean					EANYW1	Mean				
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	<5	<0.01
	Max	0.0083	0.0008		0.001		Max	0.0054	0.0258		0.013
BOLND1	Mean	<0.01	0.0074		0.0313	FINOW1	Mean				
	Min	<0.01	0.0053	<5	0.0166		Min	<0.01	<0.001	<5	<0.01
	Max	<0.01	0.0095		0.0459		Max	0.0044	<0.001		<0.01
BONET1	Mean			1.92		FLESK1	Mean				
	Min	<0.01	<0.001	1.35	<0.01		Min	0.0001	<0.001	1.17	<0.01
	Max	0.002	0.0015	2.49	0.0062		Max	0.0093	<0.001		<0.01
BOW1	Mean					FUNSH1	Mean			2.1	
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	1.91	<0.01
	Max	0.0022	0.0032		0.0141		Max	<0.01	<0.001	2.29	<0.01
BROAD1	Mean			3.83		GCREE1	Mean				
	Min	n/r	<0.001	3.42	<0.01		Min	<0.01	0.0018	1.68	0.0054
	Max	0.003	0.0011	4.24	0.0087		Max				
CAHER1	Mean					GDINE1	Mean	0.0036	0.0069	1.59	0.0345
	Min	<0.01	<0.001	<5	<0.01		Min	0.0008	<0.001	1.21	<0.01
	Max	0.0218	<0.001	2.05	<0.01		Max	0.0063	0.0082	1.97	0.0409
CAMCO1	Mean					GGARF1	Mean			1.54	
	Min	<0.01	<0.001	n/a	<0.01		Min	<0.01	<0.001	1.04	<0.01
	Max	0.0014	<0.001	1.64	<0.01		Max			2.04	
CARAG1	Mean					GNEAL1	Mean				
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	1.78	<0.01
	Max	0.0012	0.0003		0.0047		Max	0.0206	0.0032		0.0072
CBURN1	Mean					GOURN1	Mean				
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	1.53	<0.01
	Max	<0.01	0.0014		0.004		Max	0.0092	0.0043	<5	0.0244
CLYDA1	Mean					GOWLA1	Mean	0.1258	0.0052		0.014
	Min	0.0002	0.0101	<5	0.0188		Min	<0.01	<0.001	1.7	<0.01
	Max						Max	0.1258	0.0068	<5	0.0197
DODDE1	Mean					GRANE1	Mean				
	Min	<0.01	0.0028	<5	0.026		Min	0.0015	0.0032	1.52	0.0084
	Max						Max			<5	
DUNIR1	Mean			1.48		GWBAR1	Mean				
	Min	<0.01	<0.001	1.38	<0.01		Min	<0.01	<0.001	2.81	<0.01
	Max	0.0018	0.0031	1.59	0.0036		Max	<0.01	0.002		0.0051

Table 3.8. Contd	
------------------	--

		Ammonia	Nitrite	Nitrate	Phosphate			Ammonia	Nitrite	Nitrate	Phosphate
Site		mg/l N	mg/l N	mg/l N	mg/l P	Site		mg/l N	mg/l N	mg/l N	mg/l P
KEERG1	Mean					OREAG1	Mean				
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	<5	<0.01
	Max	<0.01	0.0068		0.009						
LIFFY1	Mean					OWBEG1	Mean				
	Min	<0.01	0.0027	2.52	0.0085		Min	<0.01	<0.001	<5	<0.01
	Мах			<5			Max	<0.01	0.0022		<0.01
LSLAN1	Mean					OWDAL1	Mean				
	Min	<0.01	0.001	1.29	0.0028		Min	<0.01	0.0078	<5	0.0165
LSLAN2	Mean					OWGAR1	Mean	0.0121	0.0071		0.0297
	Min	<0.01	0.0044	2.26	0.0175		Min	0.0003	<0.001	2.86	0.0077
MOY1	Mean					SHILL1	Mean	0.0156		4.75	
	Min	<0.01	<0.001	2.18	<0.01		Min	0.005	<0.001	2.39	<0.01
MOY2	Mean	0.0188	0.0058	5.08	0.0125	SLANY1	Mean			3.42	
	Min	0.007	0.0038	1.89	0.006		Min	<0.01	<0.001	2.13	<0.01
NPORT1	Mean			1.5		SULLA1	Mean			4.79	
	Min	<0.01	<0.001	1.3	<0.01		Min	0.0003	0.0018	4.57	0.0054
OGLIN1	Mean					SWANL1	Mean				
	Min	<0.01	0.0015	<5	0.0022		Min	<0.01	<0.001	2.62	<0.01
										0.00	
OMORE1	Mean			_		URRN1	Mean			2.88	
	Min	<0.01	<0.001	<5	<0.01		Min	<0.01	<0.001	2.11	0.0074

^aWhere only a minimum value is reported, only one sample was available for that particular analysis; otherwise two or three samples were analysed to produce the mean value.

most of the sites exhibiting the higher nutrient values did so only on single occasions and our sampling protocol only allowed two to four sampling periods, it was decided that no sites should be omitted from the analysis unless impact was also indicated by the biological status. From these sites only MOY2 may have a biological impact (for macrophytes) (see Section 3.6).

3.4.5 Representativeness of the sites

Various other chemical parameters were measured to characterise the sites. The frequency distribution of key measurements across the 50 sites is illustrated in Fig. 3.1.

Temperature and pH

The temperature readings were typical of the sampling season ranging from 3.0°C (OWGAR1) in the spring to 17.9°C (OREAG1) in the summer. The pH values ranged from 4.80 (URRN1) to 8.78 (CAHRE1), both recorded in

autumn 2002. The majority of the sites studied had pH values >7 (Fig. 3.1).

Dissolved oxygen

The dissolved oxygen concentrations were satisfactory at all sites, ranging from 9.26 mg/l O_2 (OREAG1) in the summer to 17.6 mg/l O_2 at OWDAL1 in the spring. Each of the sites had oxygen saturation readings above the 9 mg/l level required for salmonid waters (Salmonid Water Regulations, 1988). Values ranged from 90% (BHALL1) in the autumn to 139% (OWDAL1) in the spring. The high values at OWDAL1 are indicative of eutrophication.

Conductivity

Conductivity values ranged from 24 μ S/cm at GNEAL1, which is influenced by hard geology and nutrient-poor peaty soils, to high values of 489 μ S/cm at SHILL1, which is influenced by underlying limestone and fertile soils. The majority of sites had a mean conductivity value below

Site	Potential hydromorphological impact
DUNIR1a	Over-widened?
DUNIR1b	Over-widened?
EANYM1b	Disturbed bank; may be cause of Petasites occurrence
LIFFY1a	Banks altered/eroded?
LIFFY1b	Banks altered/eroded?
OGLIN1a	Old wall forms part of bank
OGLIN1b	Evidence of management for fisheries (boulders across channel to create pools)
MOY2	Arterial drainage – spoil heaps on banks

Table 3.9. Potential hydromorphological impacts at potential reference sites.

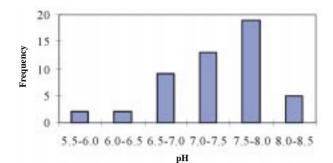
200 μ S/cm. The low representation of high conductivity waters is apparent in Fig. 3.1.

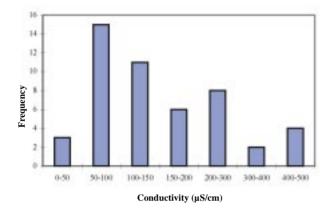
Alkalinity

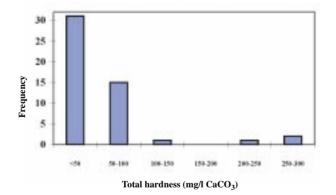
The mean alkalinity values ranged from below 1 mg/l CaCO₃, at sites such as GWBAR1 (-0.19 mg/l CaCO₃) and CBURN (0.17 mg/l CaCO₃) where there is a low buffering capacity, to values above 200 mg/l CaCO₃ at sites such as DUNNE1 (247.5 mg/l CaCO₃), BEHYM1, CAHRE1, MOY2 and SHILL1. The majority of the sites (43) had mean alkalinity values below 100 mg/l CaCO₃, with 34 of these sites having mean alkalinity values below 50 mg/l CaCO₃ (Fig. 3.1). Eleven of these sites had alkalinity values of 10 mg/l or less. These sites were all influenced by peat deposits in their catchments and included CBURN1, DODDE1, FINOW1, GNEAL1, GWBAR1, LSLAN1, URRN1 (flowing over siliceous rock formations), BLKWA1, CARAG1, GGARF1 and OREAG1 (with calcareous formations in their catchments).

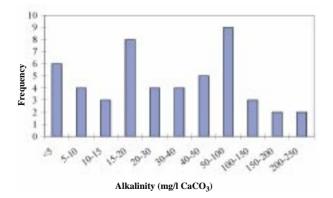
Total hardness

The total hardness values ranged from 3.24 mg/l CaCO_3 (DODDE1) to 427 mg/l CaCO₃ (MOY2). The majority of sites (46) sampled were soft waters with total hardness values below 100 mg/l CaCO₃ (Fig. 3.1).


The calcium, magnesium, potassium, sodium and chloride values for all the sites sampled fell within the ranges expected given the geological and geographical conditions. Limestone sites with high alkalinity and total hardness values were however under-represented in the study.


3.5 Hydromorphology


Each of the two stretches at the 50 sites was visually assessed for suitability as reference conditions based on their hydromorphology. Major alterations (weirs, bridges, channelised sections) were avoided but some minor bank and channel modifications could not be avoided. It was considered that anything greater than a minor alteration would also affect the biology. The sites listed in Table 3.9 were determined as potentially having hydromorphological impacts.


It was difficult to determine whether the DUNIR1 has been affected by over-widening. OGLIN1a was considered to have only a very minor alteration. OGLIN1b had pools that had been formed by boulders being placed across the channel, presumably for fisheries. However, it was also possible to survey a riffle section (OGLIN1a) and therefore, despite the exact location having a different character to that which would normally be expected, the two sections were still representative of a pool/riffle sequence which would be characteristic within this type of river. Natural boulders were also evident at the banks, and therefore the substrate was not artificial, even though its arrangement was. Impacts were considered to be very minor at these sites and therefore none was rejected.

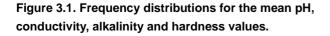

The LIFFY stretches were probably the most impacted in this survey. Flood flows appeared to have eroded the banks on the outside of the river bends. Although the flood flows may have been natural, the level of erosion could be from destabilisation of the bank due to removal of the natural riparian vegetation. Apart from these areas, the river seemed to possess a natural character that may be unlikely to be replicated by other cobble rivers of this size. Therefore, the retention of this site as a potential reference site is recommended, although future development on the reference network may suggest its removal at a later date. Silt cover may have been elevated in these sections, but at the locations surveyed the hydromorphological impact could be considered minor.

Table 3.10. A sui	mmary of sites	which potentially
have minor impac	cts within this	survey (suggested
impacts indicated	by ⊠).	

Site	☑ Macroinvertebrates	Phytobenthos	☑ Macrophytes	Hydrochemistry	Hydromorphology
AILLE1	${\bf \nabla}$		Ø		
BEHYM1					
BILBO1					
BOLND1					
BOW1					
CARAG1	${\bf \boxtimes}$				
CLYDA1		☑			
DUNIR1		☑			☑
DUNNE1		☑			
EANYM1	Ø				\square
EANYW1	Ø				
FINOW1					
GCREE1		\square			
GDINE1				\mathbf{N}	
GOURN1		\square			
GRANE1					
LIFFY1					M
MOY2			\square	\square	Ø
OGLIN1	\square				M
OREAG1	\square				
OWDAL1				$\mathbf{\nabla}$	
OWGAR1				\square	
SLANY1					

3.6 Reference Site Validation Summary

Sites can only be accepted for reference conditions if they have "*no or only very minor anthropogenic alteration*" for all of the biological elements, and for chemistry and hydromorphology (WFD, Annex V, Table 1.2). Several sites were identified as potentially having minor impacts within the surveys (Table 3.10). It was considered that the spatial reference network would suffer more from the removal of sites representative of different river types than from the effects of the possible minor impacts occurring at these sites. There was agreement of potential impacts between two different elements at six sites (AILLE1, DUNIR1, EANYM1, EANYM2, OGLIN1 and MOY2) and agreement between three elements at only two sites (OGLIN1 and MOY2). A difficulty with using measures of trophic status such as TDI, Q-values and MTR is that they were not designed for use within a typology, i.e. lowland rivers would normally be expected to be naturally more enriched than upland rivers, and conversely upland rivers which appear to pass the standard may still be relatively impacted. Therefore, direct comparisons cannot be made until a river typology is developed. From the experience with RIVPACS (Reynoldson and Wright, 2000; Wright, 2000) it is evident that any spatial reference network should, over time, be iteratively improved by both removing and including additional sites. RIVTYPE should be no exception, and the sites listed in Table 3.10 in particular should be considered for replacement by higher quality sites within the same river type, if they can be found.

Fifty reference sites were also considered to be a low number for representing the complete biological diversity of high ecological status sites. Some of the chosen survey sites were also quite close together and on the same river system. This could result in pseudo-replication of reference conditions and a lower range of species and habitats being detected. The spatial reference network should be expanded in future to include more sites, particularly more acidic upland rivers and large lowland rivers with adjacent wetlands.

3.7 Artificial Intelligence

Artificial intelligence, specifically MIR-max (O'Connor, 2002), was used to classify the biological data. An attempt was made to produce a River Pollution Diagnostic System (RPDS) model like that produced for the Environment Agency (Walley *et al.*, 2002); however, there were insufficient data to produce an effective model. Classification of biological data with MIR-max tended to be slightly worse than that produced by TWINSPAN (Hill and Minchin, 1997). A typology based on this classification method was considered to be inappropriate for species prediction, although prediction with any classification method was brought into question, given the limited range of variables available within the WFD and the high temporal variation in species.

4 Typology Production

A System A Typology (based on fixed boundaries of altitude, size and geology) is defined in the WFD, but there is allowance for development of alternative (System B) typologies which can use additional optional factors to delineate river types. If a System B Typology is used, it must achieve "*at least the same degree of differentiation as would be achieved using System A*" (WFD, Annex II 1.1 (iv)).

Four methods of classifying the sites into river types were evaluated:

- 1. The System A Typology.
- Typologies based on expert opinion of the North South Technical Advisory Group (NSTAG) for rivers which included *inter alia* river biologists from the EPA and EHS (referred to as Expert-64, 32, 16, etc.).
- 3. A typology developed by examining the most important environmental gradients within the biological data using CCA.
- 4. Typologies derived from permutation tests; assessment of biological similarities within and between groups of many different typologies.

4.1 Combining Taxonomic Data

As well as assessing the biological differentiation achieved within each biological group, it is important to combine all the biological elements to determine the overall ability of each typology to segregate distinct biological communities.

4.1.1 Method

If the numbers of taxa in one biological element greatly exceed that in the others, analysis following a combination of these elements would unduly weight the analysis towards that group. Therefore, phytobenthos data were reduced to 129 taxa, and macroinvertebrates to 122 taxa, to combine with the 114 macrophyte taxa. The phytobenthos taxa number was reduced by removing all unidentified taxa, only including taxa which occurred in five or more river samples, and including taxa that reached an abundance level of two or more in the combined spring and summer data set. The reduced macroinvertebrate data set contained only spring data, identified predominantly to the genus level.

The abundance data for the different biological elements also had to be at the same scale. This is especially important for CCA as it utilises relative abundances. The abundance values recorded for macrophytes and phytobenthos were already approximately equivalent to a log transformation. A square-root transformation was applied to the macroinvertebrate data since it was desirable to retain the zero values; the phytobenthos and macrophyte data also had zero values. The maximum values for the macrophyte, phytobenthos and invertebrate (square-root transformed) abundance data were 5, 6 and 46, respectively; the minimum was 0. The data for these taxonomic groups were therefore standardised to the same scale by multiplying by 10/5, 10/6 and 10/46, respectively, to ensure that the abundance values for each taxonomic group ranged from 0 to 10.

4.2 Developing the CCA Typology

A site conditional bi-plot with the combined taxonomic group species data was constructed using only those variables which are available within WFD System B and which enable simple visualisation within a typology (Fig. 4.1). Temperature, chloride and substrate were not included since they were considered to be subject to impacts and therefore unsuitable for determining a river typology. Rare species were down-weighted to make the CCA more robust (Cao and Larsen, 2001; Marchant, 2002).

Forward selection was performed on the combined data set to determine the variables that explained the most additional variance, and thus are likely to be the best at structuring the typology. This was only done with the first four variables to ensure that the typology was kept simple. Environmental boundaries were to be determined by visually assessing clusters; however, peat and calcareous variables were the first to be selected, which are already coded as binary categories.

4.2.1 Results

Figure 4.1 shows the site-conditional CCA biplot created from the combined macrophyte, phytobenthos and

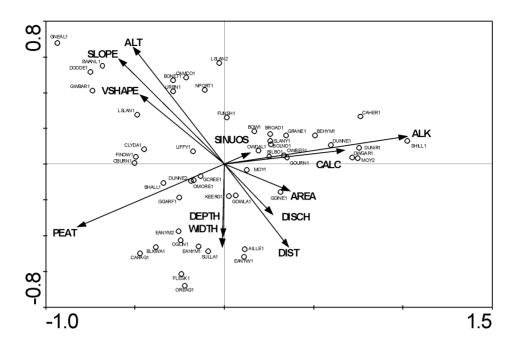


Figure 4.1. CCA site conditional bi-plot of combined biological data, using appropriate WFD variables. For the first two axes, the eigenvalues are 0.176 and 0.107, respectively, % variance explained out of total inertia is 7.1 and 4.3, respectively, and % variance explained out of canonical axes is 22.7 and 13.8, respectively. ALK, alkalinity; ALT, altitude of site; AREA, catchment area draining to site; CALC, binary calcareous category; DEPTH, channel depth; DISCH, discharge category; DIST, distance from source; PEAT, binary peat category; SINUOUS, sinuosity; VSHAPE, valley shape category; WIDTH, channel width.

invertebrate data and the appropriate WFD variables. Clearly defined clusters cannot be distinguished in the ordination, and therefore distinct river types are not evident.

Alkalinity was most correlated with the biological variance (eigenvalue = 0.136, explaining 5.5% of the variation). However, the combined (binary) categories of peat and calcareousness were selected instead (explaining together 7.5%) since it was difficult within the analysis to determine where appropriate boundaries may lie along an alkalinity gradient. Table 4.1 shows the results of the manual forward selection, following the removal of alkalinity in preference for calcareousness.

Categorical divisions were kept the same as those used in the Expert-64 Typology (Table 4.2). Catchment area boundaries were determined such that they produced a better segregation of the sites than the System A catchment area boundaries. Figure 4.2 shows the allocation of sites to the CCA Typology.

In total, 14.2% variance (out of total species variance) was explained using the variables selected from the CCA Typology.

4.3 Typologies Derived from Permutation Tests

Choosing the best category boundaries for a fixed typology is highly subjective. The choice of category boundaries for one variable may influence the best choice of category boundaries for another variable, or even the next choice of variable. The method applied here in developing the Permutation-48 Typology overcomes this by using a large number of permutation tests with different combinations of variables and category boundaries.

Table 4.1. Condition effects (additional variance explained) in manual forward selection of WFD environmental variables and combined biological data, without alkalinity.

	Eigenvalue (total variance = 2.484)	% of additional variance explained
Geology (peat and calcareousness)	0.187	7.5
Slope	0.096	3.9
Area	0.069	2.8

,	5 1
Peat	(1/0)
Calcareous	(1/0)
Slope (using the same categories as the NSTAG Typology)	<0.005 m/m
	0.05–0.02 m/m
	0.02–0.04 m/m
	0.04 m/m
Catchment area (using a spread of categories more appropriate to the 50 sites)	<20 km ²
	21–100 km ²
	101–1000 km ²
	>1000 km ² (none present in data)

Table 4.2. The CCA Typology variables derived from forward selection of the combined taxonomic group data.	Table 4.2. The CCA	Typology variables	derived from forwar	d selection of the	combined taxono	mic group data.
--	--------------------	--------------------	---------------------	--------------------	-----------------	-----------------

Olden and Jackson (2000) found that permutation tests are more likely to select inappropriate variables than forward selection within gradient analysis. However, permutation tests enable different combinations of category boundaries to be assessed simultaneously, which cannot be achieved within gradient analysis.

The BIOENV routine within PRIMER (Clarke and Gorley, 2001) was used to carry out the permutation tests in this method. A similarity matrix for the biological data is first prepared. This is calculated as the similarity between different sites based on the species found at the sites. Data for all the environmental variables that could be associated with the biology are also provided, with corresponding site names. The BIOENV routine produces a similarity matrix based on all the different combinations of the environmental variables, i.e. the similarity between sites based on the environmental variables at the site. Rank correlation coefficients between each environmental similarity matrix and the similarity matrix based on species are calculated. Rank coefficients are appropriate since the environmental and species similarities that are being compared are based on entirely different similarity coefficients (in our case, Bray-Curtis and Euclidean, respectively). The correlation coefficient is reported as a rho (ρ) value. Once the ρ values for all the possible combinations of environmental variables have been calculated, the results are ordered and displayed with the highest correlation at the top. The combination of environmental variables with the highest ρ value is that which best explains the similarities in species between sites. Therefore, it is likely that these variables are the most strongly associated with the species distributions.

4.3.1 Method

The number of potential variables for producing the typology had to be reduced since the computing power

increases exponentially with the number of variables within permutation tests. Therefore, continuous data for the variables listed in Table 4.3 were selected as the environmental data, and the combined biological data were selected as biological data. The BIOENV routine was used to find the combination of variables that best explained the Bray–Curtis similarities between sites. Variables that were repeatedly important in explaining the species similarities between sites were selected for subsequent analysis.

Once the important environmental variables had been determined, each of these variables could be divided into a range of different category types. The category boundaries were selected by considering where ecological changes would occur or enabling an even number of sites in categories. Based on the CCA analysis, it was considered that specific ecological boundary conditions did not exist, except perhaps for alkalinity and hardness. The alkalinity classes were <25 mg CaCO₃/l and >100 mg CaCO₃/l boundaries. A scatter plot of alkalinity against hardness for the site data suggested that the equivalent boundaries for hardness are <35 mg CaCO₃/l and >100 mg CaCO₃/l. Table 4.4 shows the environmental variables with their category boundaries.

A single BIOENV analysis was applied to the combined biological data (with Bray–Curtis similarity) and the complete set of categorised environmental data (with Euclidean distance similarity). Different categorical classifications of a single variable were not analysed separately; they were all included in this single permutation test. A maximum of four variable combinations was selected for the routine, although two and three variable combinations occurred within the top ten correlations.

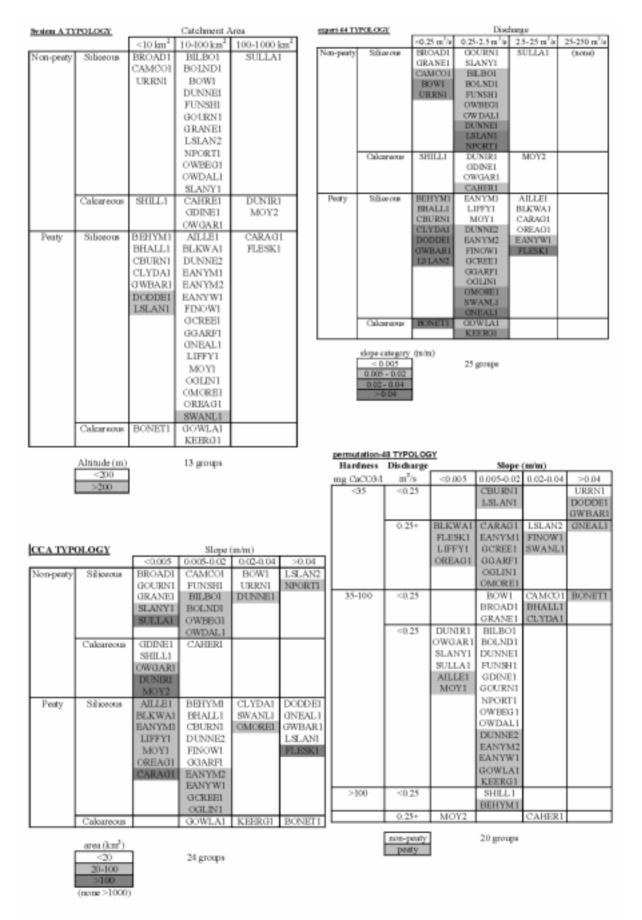


Figure 4.2. The 50 sites classified by the System A, expert-64, CCA and permutation-48 typologies.

Alkalinity	Catchment slope	Peaty
Altitude	Depth	Relief ratio
Bank slope	Discharge	Sinuosity
Calcareous	Distance from source	Slope
Catchment altitude	Drainage density	Stream order
Catchment area	Elongation ratio	Temperature
Catchment shape	Hardness	Width

Table 4.3. Full variable set used in the initial BIOENV analysis.

Table 4.4. Reduced variable set used in the BIOENV analysis with category boundaries.

Variable code	Variable	Categories	Units	
1	3 Alkalinity	<25, 25–100, >100	mg CaCO ₃ /I	
2	2 Alkalinity	<25, 25+	mg CaCO ₃ /I	
3	4 Hardness	<20, 20–50, 50–100, >100	mg CaCO ₃ /I	
4	3 Hardness	<35, 35–100, >100	mg CaCO ₃ /I	
5	2 Hardness	<35, 35+	mg CaCO ₃ /I	
6	2 Geology (calcareous)	Calcareous/non-calcareous	-	
7	2 Peat	Peaty/non-peaty	-	
8	4 Discharge	<0.25, 0.25–2.5, 2.5–25, >25*	m ³ /s	
Ð	2 Discharge	<0.25, 0.25 +	m ³ /s	
10	3 Catchment area	<10, 10–100, >100	4 km ²	
11	3 Altitude	<50, 50–150, 150+	m	
12	2 Altitude	<50, 50+	m	
13	3 Catchment slope	<10, 10–25, >25	m/km	
14	2 Catchment slope	<10, 10+	m/km	
15	4 Drainage density	0, 1, 2, 3		
16	3 Distance from source	< 10, 10–30, >30	km	
17	2 Distance from source	<10, 10+	km	
18	4 Slope	<0.005, 0.005–0.02, 0.02–0.04, >0.04	m/m	
9	3 Slope	<0.005, 0.005-0.02, >0.02	m/m	
20	2 Slope	<0.02, 0.02+	m/m	

*Only three discharge categories are actually represented by the site data.

It is possible that the same variable is selected twice for a single typology if the boundaries between the categories do not coincide. This suggests that both sets of boundaries are important and a different set of boundary conditions or an increased categorisation of that variable should be used. This occurred with two hardness variables (Nos 3 and 5), but could not occur with any other variables since, even though there were different numbers of categories, they had coincident boundaries. BIOENV analyses using only one of the categorical hardness variables in turn showed the three category hardness variable to repeatedly explain the most

variance, so this was retained. Table 4.5 shows the results of the BIOENV analysis.

4.3.2 Results

Hardness (var. 4), was the most important variable occurring in every suggested combination. Four-category slope (var. 18), also occurred in all of the top six results, suggesting that this is the next most important variable.

The highest correlation between the species and environment data was found to be with hardness (var. 4), slope (var. 18), peat (var. 7) and discharge (var. 9), producing a 48-category Typology. Coincidentally, the best three-variable combination was the same excluding peat, and the best two-variable combination was the same excluding both peat and discharge. Therefore, in order of importance the typology structure (Permutation-48) is:

3 hardness categories: <35, 35-100, >100

4 slope categories: <0.005, 0.005-0.02, 0.02-0.04, >0.04

- 2 discharge categories:<0.25, 0.25+
- 2 peat categories: 1/0.

Based on the BIOENV results in Table 4.5, a typology with fewer river types is produced by removing the variables consecutively from the bottom of the 48-Typology hierarchy, i.e. a 24-category Typology is formed by removing peat, and a 12-category Typology is formed by removing peat and discharge.

The allocation of sites to the Permutation-48 Typology is shown in Fig. 4.2. The allocation of sites for the 24- and 12-category typologies can also be derived from this figure.

4.3.3 Conclusions

Hardness was found to be more important in forming a typology than either alkalinity or geology

Table 4.5. BIOENV results showing correlations of variable combinations with species similarities between sites, using the combined species data set. The variable set was restricted to a maximum of four variables. Variable codes are listed in Table 4.4.

Number of variables	Correlation	Selections
4	0.477	4, 7, 9, 18
4	0.473	2, 4, 9, 18
3	0.470	4, 9, 18
3	0.463	4, 8, 18
4	0.460	4, 7, 8, 18
4	0.460	1, 4, 8, 18
3	0.459	4, 8, 20
4	0.458	4, 7, 9, 20
2	0.458	4, 18
4	0.458	4, 7, 8, 20

(calcareousness). Slope was the next most important variable, and requires all four categories to optimise the typology. Discharge, which is estimated from catchment area and rainfall, only required two categories. Possibly this allows differentiation between the small lowland, lowslope streams and the large lowland, low-slope rivers. Peat amount has some use in the typology, but could be ignored if a smaller typology is required.

5 Assessing Typology Performance

5.1 Introduction

The performance of the typologies was determined by assessing how well they predict type-specific reference conditions. It is important to remember that classifications are subjective since a decision always has to be made on the elements of a community which have to be classified, e.g. changes in ecological integrity could be represented by changes at the family level, changes in ratios of one functional group of species to another or other assessments of the ecological functioning (Angermeier and Karr, 1994) rather than species change. However, species are usually the most sensitive indicators of impact (Angermeier and Karr, 1994) and, within the WFD, measurement of composition and abundance within the taxonomic group is specified. Classifications also depend on a similarity measure for comparing sites or groups of sites. Within TWINSPAN (and ordination methods) this is the chi-squared value, whereas within other traditional classifications the more biologically applicable Bray-Curtis similarity measure is usually used. The MIR-max artificial intelligence classification utilises Mutual Information as a similarity measure. Classifications assessed using the similarity index that was used to create them are inevitably going to appear to perform better and so care must be taken in interpretation.

5.2 Methods

Concordance between the typologies and the biological data can be assessed using the method of Paavola *et al.* (2003) with ANOSIM (Clarke and Warwick, 1994; Clarke

and Gorley, 2001). The hypothesis is that if a classification is imposed on species data the within-group variability should be less than the between-group variability if there is any concordance between the classification and the biological community.

Each typology under test was used to classify the sites and ANOSIM (using Bray–Curtis similarity) was used to determine whether the within-group variability was greater than the between-group variability for each of these typologies. The typologies being tested were the Permutation-48 Typology and the 23 and 12 river type derivatives of this, the Expert-64 Typology, determined by the NSTAG, and the 32 and 16 river type derivatives, the CCA-based Typology (48 potential river types) and the System A Typology from the WFD (24 potential river types in Ecoregion 17) (Fig. 4.2).

5.3 Results

The CCA, expert-32 and expert-16 typologies did not produce a significant classification of the invertebrate biology (Table 5.1). Although the Expert-64 Typology produced good results for combined and individual taxonomic group data, the Permutation-48 Typology and its derivatives out-performed all other typologies. There was not a large decrease in effectiveness between the Permutation-48 and Permutation-12 typologies, except for phytobenthos. The Expert-64 Typology and the Permutation-48, -24 and -12 typologies all performed better than the System A Typology.

Table 5.1. Effectiveness of the typologies in segregating the biological data. Values are Global-R values from ANOSIM. Significance (Sig.) is calculated from 999 permutations. Only spring data were used for the macroinvertebrates. Results are ordered by effectiveness with the combined data.

Туроlоду	Biological data							
	Combined		Macrophyte		Phytobenthos		Macroinvertebrates	
		Sig.		Sig.		Sig.		Sig.
Permutation-48	0.489	0.001	0.333	0.001	0.464	0.001	0.365	0.001
Permutation-24	0.467	0.001	0.333	0.001	0.384	0.001	0.383	0.001
Permutation-12	0.402	0.001	0.276	0.001	0.333	0.001	0.382	0.001
Expert-64	0.333	0.001	0.224	0.012	0.299	0.002	0.195	0.015
System A	0.330	0.001	0.173	0.015	0.349	0.001	0.145	0.042
Expert-32	0.308	0.001	0.185	0.010	0.346	0.001	0.049	0.265
CCA	0.304	0.001	0.193	0.023	0.308	0.002	0.111	0.103
Expert-16	0.251	0.002	0.152	0.032	0.291	0.001	0.059	0.229

5.4 Discussion

Although the Expert-64 Typology performed better than the System A Typology, by far the best were the Permutation-48, -24 and -12 typologies(in that order). The Permutation-24 Typology only had a minor drop in Global-R values compared to the Permutation-48 Typology. The CCA, Expert-32 and Expert-16 typologies performed very poorly in the concordance test with the combined and individual taxonomic data and none of these significantly segregated macroinvertebrate data.

There was only a single site in a large proportion of the river types within the typologies examined. Therefore, the biological range within this river type may not be represented. Also, since there was only one site, statistical analyses will suggest that there is no biological variation within these river types and therefore may overestimate the ability to classify or predict the biology.

The 50 sites may be too few or too unevenly distributed throughout the biological response gradients to represent all the different river types. RIVPACS in Northern Ireland uses 110 reference sites to characterise a much smaller and less diverse area. The typologies have been optimised for the 50 sites, and the reliability of the analyses when extrapolated to the whole of Ireland is highly dependent on the representativeness of this subsample.

5.5 Additional Comments

It is not likely that a typology will lead directly to the derivation of species lists for each river type, but measures of biological condition could be derived. Any single typology is likely to be sub-optimal for species prediction for one or more of the taxonomic groups. Although species are often good early indicators of impacts, more robust predictions could be made by using simpler biological elements such as functional groups of species (Willby *et al.*, 2000), family-level predictions, or the prediction of metrics (Dodkins *et al.*, 2005). If metrics are used, characterisation of the river types by metric values would require far fewer river types. However, in this case the typology would be best optimised by reducing the variance in metric scores for a river type, rather than the variance in species.

The Trophic Diatom Index (Kelly, 1998), Mean Trophic Ranking (Holmes *et al.*, 1999), BMWP scores (Armitage *et al.*, 1983) or other metrics (Dodkins *et al.*, 2005) could be used to produce characteristic scores for each river

type within a typology. It is unlikely that a simple typology will be useful in a RIVPACS (Wright *et al.*, 1984) modelling approach, since WFD-required typologies use only a small number of variables, and are fixed rather than probabilistic. Characterisation of metric values for even quite a large number of river types into five ecological status classes seems feasible. Interpolation of reference conditions using the same variables as the accepted (fixed-boundary) typology could improve metric predictions whilst still enabling the submission of ecological status values to the EU within the structure of the (fixed-boundary) typology.

5.6 Conclusions and Recommendations

There is little difference in performance between the best three typologies, which are the permutation-48, 24 and 12 Typologies. These typologies were substantially better than any other environmental typologies in segregating the biological data and they performed equally well with each of the taxonomic groups. The only other typology to perform better than the System A Typology was the Expert-64 Typology.

Typology optimisation was only carried out using 50 sites. Validation with biological data for all the taxonomic groups from additional sites may be required to ensure that the best typologies work well on a larger scale. Some sites, particularly MOY2, GDINE1 and OGLIN1, have questionable status as reference sites. Potentially the typology may have to be expanded for river types that are dissimilar to the 50 reference sites used in this study and additional high status sites should be examined within Ecoregion 17.

Out of the top three performing typologies it is suggested that the Permutation-12 Typology is adopted since (i) there is little difference in performance compared to the Permutation-48 and -24 typologies and (ii) there are far fewer river types than the other typologies. Adopting a low number of river types within a typology also suggests that some form of metric scores will need to be used to assess impact, rather than species predictions.

5.7 Recent Developments

The Permutation-12 Typology was adopted by the EPA for the purposes of the WFD Article 5 Characterisation Report. Table 5.2 presents the assignment of sites in the Permutation-12 Typology based on GIS-derived slope values.

Hardness code	Code values	Slope					
	-	1	2	3	4		
		≤ 0.005 m/m	0.005–0.02 m/m	0.02–0.04 m/m	>0.04 m/m		
1	<35 mg/l	BLKWA1	CARAG1	CBURN1	DODDE1		
		EANYM1	GGARF1	GWBAR1	LSLAN1		
		FINOW1	LSLAN2	OMORE1			
		FLESK1	OGLIN1	SWANL1			
		GCREE1		URRN1			
		GNEAL1					
		LIFFY1					
		OREAG1					
2	35–100 mg/l	AILLE1	BHALL1	BOW1	BONET1		
		BROAD1	BILBO1	CLYDA1			
		DUNIR1	BOLND1	DUNNE1			
		EANYW1	CAMCO1	KEERG1			
		GOURN1	DUNNE2				
		GRANE1	EANYM2				
		MOY1	FUNSH1				
		OWGAR1	GDINE1				
		SLANY1	GOWLA1				
		SULLA1	NPORT1				
			OWBEG1				
			OWDAL1				
3	>100 mg/l	MOY2	BEHYM1				
			CAHER1				
			SHILL1				

Table 5.2. Assignment of sites in the Permutation-12 Typology based on GIS-derived slope values. Code refers to the two-digit code used to define the river type, the first digit indicating geology and the second digit the river slope (e.g. River Type 23 has a hardness value in the range 35–100 mg/l CaCO₃ and a slope of 0.02-0.04 m/m).

6 Composition of Biological Elements within River Types

Species occurring at the 50 sites that characterise river types within the Permutation-12 Typology are summarised in Table 6.1.

INDVAL within PC-ORD (McCune and Mefford, 1999) was used to determine the indicator species associated with the different river types for each biological element (Table 6.1) (based on the new allocation of sites). For each river type, these are ordered as macroinvertebrates, phytobenthos, then macrophytes. Indicator species cannot be derived for river types with zero or one site. Indicator values range from 0 to 100, indicating the strength of the association with the river type (100 being a perfect indicator of that river type). All the species listed are significant indicators at P = 0.05.

Table 6.2 shows the range of chemistry associated with these river types. Ranges are likely to vary less with river

types that have fewer sites, and therefore may not reflect the true range of high status sites within the whole of Ireland. Where the sample was below the limit of detection (LoD), a value equal to half the LoD value was used to enable mean values to be generated.

An expected species list is difficult to construct for river types since natural variation (e.g. due to natural disturbance) is likely to result in some species not occurring. Also, perfect indicator species are unlikely to exist since biological communities are not discrete, but more likely to be a patchy continuum (Poole, 2002), and thus an environmental typology with discrete boundaries can never precisely define the communities. Therefore, lists were constructed which show frequency of occurrence of species within each different river type (Appendix).

12-Typology group	Indicator species	Indicator value	P-value
11	Phormidium fragile	27	0.032
	Tabellaria flocculosa	32	0.042
12	Rhyacophila munda	40	0.041
	Gomphonema clavatum	35	0.050
13	Lyngbya aestuarii	49	0.018
14	Plectrocnemia spp.	39	0.015
	Diura bicaudata	92	0.000
	Ameletus inopinatus	100	0.000
	Achnanthes peterserii	41	0.046
	Eunotia bidentula	50	0.015
	Racometrium	35	0.048
	Lemanea	50	0.040
	Scapania undulata	57	0.003
21	Limnius volckmari	18	0.039
	Nitzschia dissipata	23	0.013
	Navicula gregaria	28	0.032
	Cladophora glomerata	37	0.034
22	Cocconeis placentula	23	0.004
23	Lasiocephala basalis	36	0.000
20	Rhynchostegium ripariodes	26	0.035
	Plagiomnium rostratum	44	0.031
24		44	0.051
24 31	INSUFFICIENT SITES	-	-
32	Chironominae	25	0.025
52			0.025
	Sericostoma personatum	26	0.033
	Tanypodinae	26	0.041
	Baetis muticus	32	0.002
	Chelifera spp.	36	0.033
	<i>Gongrosira</i> sp.	34	0.017
	Heribaudiella fluviatilis	41	0.049
	Amphora pediculus	42	0.017
	Rhoicosphenia abbreviata	45	0.010
	Phormidium ambiquum	50	0.042
	<i>Navicula</i> sp. 7	50	0.043
	Stephanodiscus hantzschii	50	0.043
	Hildenbrandia rivularis	78	0.004
	Filipendula ulmaria	24	0.044
	Angelica sylvestris	33	0.037
	Hypericum tetrapterum	42	0.029
	Amblystegium riparium	56	0.012
	Veronica beccabunga	60	0.001
	Apium nodiflorum	64	0.002
	Rorippa nasturtium-aquaticum	80	0.001
33	INSUFFICIENT SITES	-	-
34	INSUFFICIENT SITES	-	-
		= macroinvertebrates	
		= phytobenthos	
		= macrophytes	

Table 6.1. Indicator species (from INDVAL) for each river type. Macrophyte species in bold are confined to banks, and are likely to be more indicative of neighbouring landscape and land-use than type-specific river chemistry or hydromorphology.

	• •			ium) in parenth							
River type	рН			Ammonia (mg/I N)	Р	hosphate (mg/I P)	Nitrite (mg/l N)		Nitrate (mg/I N)		
11	6.81	(5.11-8.08)	0.006	(<0.01-0.021)	0.005	(<0.01-0.012)	0.001	(<0.001-0.004)	2.216	(<5)	
12	7.06	(6.45-8.47)	0.005	(0.001–0.005)	0.006	(0.002–0.017)	0.001	(<0.001-0.004)	2.139	(<5)	
13	6.90	(4.8–7.91)	0.005	(0.001–0.005)	0.006	(0.004–0.014)	0.002	(0.001–0.007)	2.698	(<5)	
14	6.08	(4.97–6.64)	0.005	(0.005–0.005)	0.014	(0.003–0.026)	0.002	(0.001–0.003)	2.096	(<5)	
21	7.58	(6.31–8.43)	0.007	(<0.01-0.028)	0.012	(0.004–0.052)	0.004	(0.001–0.026)	2.647	(<5–5.017)	
22	7.55	(6.51–8.51)	0.009	(<0.01-0.126)	0.011	(0.003–0.046)	0.003	(0.001–0.010)	2.050	(<5)	
23	7.92	(7.15–8.69)	0.004	(<0.01-0.005)	0.012	(0.005–0.029)	0.004	(0.001–0.010)	2.500	(<5)	
24	8.27	(8.17–8.43)	0.004	(0.002–0.005)	0.006	(0.005–0.006)	0.001	(0.001–0.002)	1.919	(<5)	
31	8.23	(8.06-8.46)	0.019	(0.007–0.033)	0.011	(0.005–0.016)	0.004	(0.001–0.008)	5.078	(<5–9.081)	
32	8.00	(7.46–8.78)	0.014	(0.005–0.026)	0.005	(0.005–0.005)	0.001	(0.001–0.002)	4.454	(<5–7.847)	

Table 6.2. Chemistry at each of the river types from the Permutation-12 Typology. Mean values are presented, with ranges (minimum to maximum) in parentheses.

References

- Angermeier, P.L. and Karr, J.R., 1994. Biological integrity versus biological diversity as policy directives. *Bioscience* **44(10)**: 690–697
- Armitage, P.D., Moss, D. and Wright, J.F., 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of polluted running-water sites. *Water Research* **17**: 333–347.
- Barbour, M.T., Gerritsen, J., Snyder, B.D. and Stribling, J.B., 1997. Revision to Rapid Bioassessment protocols for use in streams and rivers: Periphyton, Benthic macroinvertebrates & Fish. Chp. 7, Environmental Protection Agency, USA.
- Bolas, P.M. and Lund, J.W.G., 1974. Some factors affecting the growth of *Cladophora glomerata* in the Kentish Stour. *Journal of the Society of Water Treatment and Examination* 23: 25–51.
- Cao, Y. and Larsen, D.P., 2001. Rare species in multivariate analysis for bioassessment: some considerations. *Journal of the North American Benthological Society* **20(1):** 144–153.
- CEN, 2002. Draft standard Guidance standard for the surveying of aquatic macrophytes in running waters. EN 14184. Comité Europeén de Normalisation.
- CEN, 2003a. *Guidance standard for the surveying of aquatic macrophytes in running waters*. EN 14184. Comité Europeén de Normalisation.
- CEN, 2003b. Draft standard Guidance for routine sampling of benthic algae in shallow swift running waters. September 2003.
- CEN/TC230/WG2/TG3, 2003. Water quality Guidance standard for the routine sampling of benthic algae in shallow swift running waters. Comité Europeén de Normalisation.
- CEN/TC230/WG2/TG3, 2004. Water quality Guidance standard for the survey, sampling and laboratory analysis of phytobenthos in shallow running water. Comité Europeén de Normalisation.
- Clarke K.R. and Gorley R.N., 2001. *PRIMER (Plymouth Routines in Multivariate Ecological Research) Version 5.* PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth.
- Clarke, K.R. and Warwick, R.M., 1994. *Change in Marine Communities*. Plymouth Marine Laboratory, Plymouth.
- Council of the European Communities., 2000. Directive of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. L327. *Official Journal of the European Communities*, **43(22/12/2000)**: 1–73.
- Dawson, F.H., Newman, J.R., Gravelle, M.J., Rouen, K.J. and Henville P., 1999. Assessment of the trophic status of rivers using macrophytes. Evaluation of the Mean Trophic Rank. E39. Environment Agency, Bristol.
- Dodkins, I.R., 2003. *Developing a macrophyte index of ecological status for Northern Ireland's rivers*. PhD Thesis, University of Ulster, Coleraine.
- Dodkins, I., Rippey, B. and Hale, P., 2005. An Application of

Canonical Correspondence Analysis For Developing Ecological Quality Assessment Metrics For River Macrophytes. *Freshwater Biology* (accepted).

- EN 13946, 2002. Water Quality guidance standard for the routine sampling and pre-treatment of benthic diatoms from rivers.
- EN 13946, 2003. Water Quality –guidance standard for the routine sampling and pre-treatment of benthic diatoms from rivers. 14 pp.
- EN 14407, 2004. Water quality Guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters.
- EPA, 1997. Environmental quality objectives and environmental quality standards. The aquatic environment. A discussion document. Environmental Protection Agency, Ireland.
- Flanagan, P.J., 1992. *Parameters of Water Quality.* Environmental Protection Agency, Ireland.
- Haury, J., 1996. Assessing functional typology involving water quality, physical features and macrophytes in a Normandy river. *Hydrobiologia* **340**: 43–49.
- Hill, M.O. and Minchin, P.R., 1997. TWINSPAN: Divisive classification program. Centre for Ecology and Hydrology.
- Holmes, N.T.H., Newman, J.R., Dawson, F.H., Chadd, S., Rouen, K.J. and Sharp, L., 1999. *Mean trophic rank: a users manual.* R&D Technical Report, Environment Agency, Bristol.
- John, D.M., Whitton, B.A. and Brook, A.J. (eds), 2002. The Freshwater Algal Flora of the British Isles. An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge, UK.
- Kelly, M.G., 1998. Use of the trophic diatom index to monitor eutrophication in rivers. *Water Research* **32(1):** 236–242
- Kelly, M.G. and Whitton B.A., 1995. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. *Journal of Applied Phycology* 7: 433–444.
- Kelly, M.G., Adams, C., Graves, A.C., Jamieson, J., Krokowski, J., Lycett, E.B., Murray-Bligh, J., Pritchard, S. and Wilkins, C., 2001. *The Trophic Diatom Index: A User's Manual*. R&D Technical Report E2/TR2.
- Kinross, J.H., Christofi, N., Read, P.A. and Harriman, R., 1993. Filamentous algal communities related to pH in streams in The Trossachs, Scotland. *Freshwater Biology* **30**: 301–317.
- Krammer, K. and Lange-Bertalot., 1986. Süsswasserflora von Mitteleuropa. Bacillariophyceae 2/1 Naviculaceae. Gustav Fischer, Stuttgart.
- Krammer, K. and Lange-Bertalot., 1988. Süsswasserflora von Mitteleuropa. Bacillariophyceae 2/2 Epithemiaceae, Surirellaceae. Gustav Fischer, Stuttgart.
- Krammer, K. and Lange-Bertalot., 1991a. *Süsswasserflora von Mitteleuropa. Bacillariophyceae* 2/3 *Centrales, Fragilariaceae, Eunoticeae.* Gustav Fischer, Stuttgart.
- Krammer, K. and Lange-Bertalot., 1991b. Süsswasserflora von

Mitteleuropa. Bacillariophyceae 2/4 Achnanthaceae und Gomphonema. Gustav Fischer, Stuttgart.

- Marchant, R., 2002. Do rare species have any place in multivariate analysis for bioassessment? *Journal of the North American Benthological Society* **21(2)**: 311–313.
- McCune, B. and Mefford, M.J., 1999. *PC-ORD. Multivariate analysis of ecological data, Version 4.* MjM Software Design, Gleneden Beach, Oregon, USA.
- McGarrigle, M., Bowman, J.J., Clabby, K.J., Cunnungham, P., MacCarthaigh, M., Keegan, M., Contrell, B., Lehane, M., Clenaghan, C. and Toner, P.F., 2002. *Water Quality in Ireland 1998–2000*. Environmental Protection Agency, Ireland. 123 pp.
- Ministry of Water, Land and Air, British Columbia, 2004. http://wlapwww.gov.bc.ca/wat/wq/didy_bcstrms.html [accessed 29 February 2004].
- O'Connor, M., 2002. *Mutual Information and Regression Maximisation (MIR-max) software Version 0.2.* e-mail: mo3@staffs.ac.uk, Staffordshire University.
- Olden, J.D. and Jackson, D.A., 2000. Torturing data for the sake of generality: how valid are our regression models? *Ecoscience* **7(4)**: 501–510.
- Paavola, R., Muotka, T., Virtanen, R., Heino, J. and Kreivi, P., 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? *Freshwater Biology* **48**: 1912–1923.
- Poole, G.C., 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. *Freshwater Biology* 47: 641–660.
- prEN 14407, 2003. Water quality Guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters.
- Reynoldson, T.B. and Wright, J.F., 2000. The reference condition: problems and solutions. *In:* Wright, J.F., Sutcliffe, D.W. and Furse, M.T. (eds). *Assessing the biological quality of fresh waters RIVPACS and other techniques.*Freshwater Biological Association, Ambleside.
- Walley, W.J., O'Connor, M.A., Trigg, D.J. and Martin, R.W., 2002. Diagnosing and predicting river health from biological survey data using pattern recognition and plausible reasoning. Technical Report E1-056/TR2. Environment

Agency, Bristol.

- Wehr, J.D. and Sheath, R.G., 2003. *Freshwater Algae of North America: Ecology and Classification*. Academic Press, San Diego.
- Whitton, B.A., 1970. Biology of *Cladophora* in freshwaters. *Water Research* **4:** 457–476.
- Whitton, B.A., Balbi, D.M., John, D.M., Ellwood, N.T.W., York, P.V. and Donaldson, A., 2002. Freshwater green algae of the British Isles. An interactive key to the commoner genera and species. (CD-ROM produced in collaboration with the Environment Agency of England and Wales) School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK ISBN 0-9538842-3-6.
- Whitton, B.A., Balbi, D.M. and Donaldson, A., 2003. Blue–green algae of the British Isles. Interactive Key Version 2. (CD-ROM produced in collaboration with the Environment Agency of England and Wales) School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK ISBN 0-9538842-0-1.
- Wilby, R.L., Cranston, L.E. and Darby, E.J., 1998. Factors governing macrophyte status in Hampshire chalkstreams: implications for catchment management. *Journal of the Charted Institute of Water and Environmental Management* 12: 179–187.
- Willby, N.J., Abernethy, V.J. and Demars, B.O.L., 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilisation. *Freshwater Biology* **43**: 43–74.
- Wright, J.F. 1995. Development and use of a system for predicting the macroinvertebrate fauna flowing waters. *Australian Journal of Ecology* **20:** 181–197.
- Wright, J.F., 2000. An introduction to RIVPACS. *In:* Wright, J.F., Sutcliffe, D.W. and Furse, M.T. (eds) Assessing the Biological Quality of Fresh Waters. Freshwater Biological Association, Ambleside, Cumbria.
- Wright, J.F., Moss, D., Armitage, P.D. and Furse, M.T., 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. *Freshwater Biology* **14(3)**: 221–256.

Appendix Species Frequencies for Each River Type

River Type 11 (8 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq
Ancylus fluviatilis	100	Chloroperla tripunctata	75	Mystacides azurea	38	Diura bicaudata	13
Lumbriculus variegatus	100	Plectrocnemia conspersa	75	Oecetis testacea	38	Calopteryx splendens	13
Tubificidae indet.	100	Agapetus spp.	75	Ecclisopteryx guttulata	38	Velia caprai	13
Enchytraeidae indet.	100	Athripsodes spp.	75	Halesus digitatus	38	Gerris najas	13
Lumbricidae indet.	100	Eloeophila spp.	75	Atherix marginata	38	Micronecta poweri	13
Serratella ignita	100	Hemerodromia spp.	75	Chelifera spp.	38	Hydraena testacea	13
Baetis rhodani	100	Lymnaea peregra	63	Simulium variegatum	38	Gyrinus caspius	13
Centroptilum luteolum	100	Glossiphonia complanata	63	Tricladidia indet.	25	Dryops spp.	13
Ecdyonurus venosus	100	Heptagenia sulphurea	63	Bathyomphalus contortus	25	Haliplus lineatocollis	13
Protonemura meyeri	100	Ecdyonurus insignis	63	Lymnaea truncatula	25	Hydroporus pubescens	13
Leuctra hippopus	100	Brachyptera risi	63	Pisidium nitidum	25	Hydroporus discretus	13
Elmis aenea	100	Nemoura spp.	63	Pisidium personatum	25	Stictonectes lepidus	13
Oulimnius tuberculatus	100	Oreodytes septentrionalis	63	Margaritifera margaritifera	25	Agabus paludosus	13
Limnius volckmari	100	Hydrocyphon spp.	63	Aulodrilus pluriseta	25	Nebrioporus depressus elegans	13
Hydraena gracilis	100	Polycentropus kingi	63	Tubifex ignotus	25	Nebrioporus depressus elegans complex	13
Orectochilus villosus	100	Antocha spp.	63	Glossiphonia hereroclita	25	Helophorus spp.	13
Hydropsyche siltalai	100	<i>Simulium argyreatum/ variegatum</i> group	63	Procloeon bifidum	25	Osmylus fulvicephalus	13
Lepidostoma hirtum	100	Prodiamesinae indet.	63	Ecdyonurus dispar	25	Wormaldia occipitalis	13
Halesus radiatus	100	Chironominae indet.	63	Paraleptophlebia cincta	25	Wormaldia subnigra	13
Sericostoma personatum	100	Pisidium casertanum	50	Caenis luctuosa	25	Chimarra marginata	13
<i>Tipula</i> spp.	100	Nematoda indet.	50	Calopteryx virgo	25	Neureclipsis bimaculata	13
Ceratopogonidae indet.	100	Erpobdella octoculata	50	Hydraena riparia	25	Plectrocnemia geniculata	13
Simuliidae indet.	100	Nemoura avicularis	50	Limnebius truncatellus	25	Polycentropus irrorata	13
Tanypodinae indet.	100	Perla bipunctata	50	Gyrinus urinator	25	Holocentropus dubius	13
Orthocladiinae indet.	100	Oreodytes davisii	50	Hydroporus tessellatus	25	Cheumatopsyche lepida	13
Potamopyrgus antipodarum	88	Psychomyia pusilla	50	Curculionidae indet.	25	Hydropsyche instabilis/ pellucidula	13
Baetis muticus	88	Lype phaeopa	50	Agapetus ochripes	25	Glossosoma boltoni	13
Rhithrogena semicolorata	88	Glossosoma spp.	50	Lasiocephala basalis	25	Agapetus fuscipes	13
Amphinemura sulcicollis	88	Goera pilosa	50	Athripsodes cinereus	25	Silo nigricornis	13
Isoperla grammatica	88	Ithytrichia spp.	50	Chaetopteryx villosa	25	Agraylea spp.	13
Siphonoperla torrentium	88	Odontocerum albicorne	50	Limnephilus spp.	25	Crunoecia irrorata	13
Esolus parallelepipedus	88	Pisidium subtruncatum	38	Potamophylax latipennis	25	Anabolia nervosa	13
Oreodytes sanmarkii	88	Rhyacodrilus coccineus	38	Pedicia spp.	25	Drusus annulatus	13
Rhyacophila dorsalis	88	Spirosperma ferox	38	Limnophora spp.	25	Limnephilus lunatus	13
Polycentropus flavomaculatus	88	Helobdella stagnalis	38	Simulium dunfellense/ urbanum group	25	Limnephilus marmoratus	13
Hydropsyche pellucidula	88	Asellus aquaticus	38	Simulium reptans	25	Beraea maurus	13
Silo pallipes	88	Siphlonurus lacustris	38	Lymnaea palustris	13	Limonia spp.	13
Oxyethira spp.	88	Baetis vernus	38	Pisidium hibernicum	13	Dixa puberula	13
Hydroptila spp.	88	Ecdyonurus torrentis	38	Pisidium milium	13	Ptychoptera spp.	13
Potamophylax cingulatus	88	Nemoura cinerea	38	Sphaerium corneum	13	Stratiomyidae indet.	13
Dicranota spp.	88	Haliplus spp.	38	Limnodrilus hoffmeisteri	13	Athericidae indet.	13
Psychodidae indet.	88	Stictotarsus duodecimpustulatus	38	Theromyzon tessulatum	13	Empididae indet.	13
Stylodrilus heringianus	75	, Elodes spp.	38	Piscicola geometra	13	Simulium vernum	13
Gammarus duebeni	75	Rhyacophila munda	38	Haemopis sanguisuga	13	Simulium argyreatum	13
Hydracarina indet.	75	Philopotamus monatus	38	Gammarus pulex	13	Simulium noelleri	13
Baetis scambus	75	Cyrnus trimaculatus	38	Austropotamobius pallipes	13	Simulium rostratum	13
Electrogena lateralis	75	Lype reducta	38	Ameletus inopinatus	13	Eukiefferiella coerulescens	13
Caenis rivulorum	75	Tinodes waeneri	38	Leptophlebia vespertina	13	Microtendipes pedellus	13

River Type 11 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq	Macrophytes contd.	% freq
Achnanthes oblongella	100	Achnanthes lanceolata	25	Juncus articulatus	75	Montia fontana	13
Achnanthidium minutissimum	100	Cladophora glomerata	25	Juncus effusus	75	Myriophyllum alternifolium	13
Fragilaria capucina	100	Cyclotella meneghiniana	25	Racometrium	75	Persicaria hydropiper	13
Fragilaria capucina var. vaucheriae	100	Cymbella microcephala	25	Ranunculus flammula	75	Petasites hybridus	13
Gomphonema parvulum	100	Diatoma mesodon	25	Chiloscyphus polyanthos	63	Phalaris arundinacea	13
Tabellaria flocculosa	100	Diatoma tenuis	25	Oenanthe crocata	63	Plagiomnium undulatum	13
Cymbella silesiaca	88	Eunotia minor	25	Pellia epiphylla	63	Polytrichum commune	13
Nitzschia palea	88	Gomphonema acuminatum	25	Callitriche hamulata	50	Potamogeton filiformis	13
Cymbella minuta	75	Gomphonema angustum	25	Cladophora spp.	50	Ranunculus peltatus	13
Navicula cryptotenella	75	Gomphonema gracile	25	Filipendula ulmaria	50	Rorippa amphibia	13
Nitzschia dissipata	75	Meridion circulare	25	Fontinalis antipyretica	50	Sphagnum	13
Phormidium fragile	75	Navicula halophila	25	Lythrum salicaria	50	Spirogyra	13
Synedra ulna	75	Navicula rhynchocephala	25	Angelica sylvestris	38	Stachys palustris	13
Brachysira vitrea	63	Oedogonium W2	25	Callitriche stagnalis	38	Valeriana	13
Chamaesiphon incrustans	63	Oedogonium W4	25	Conocephalum conicum	38	valenana	10
	63	-	25	Glyceria fluitans	38		
Cymbella gracilis		Oedogonium W5		,			
Eunotia implicata	63	Oscillatoria agardhii	25	Mnium hornum	38		
Gomphonema minutum	63	Oscillatoria brevis	25	Rhizomnium punctatum	38		
Gomphonema olivaceum	63	Oscillatoria sancta	25	Scapania undulata	38		
Hannea arcus	63	Spirogyra W2	25	Butomus umbellatus	25		
Lemanea fluviatilis	63	Stigeoclonium sp.	25	Calliergon cuspidatum	25		
Monostroma sp.	63	Tabellaria fenestrata	25	Filamentous green algae	25		
Navicula gregaria	63	Ulothrix tenerrima	25	Fortinalis squamosa	25		
Audouinella hermannii	50	Zygnema W1	25	Hyocomium armoricum	25		
Bulbochaete sp.	50	Zygnema W3	25	Jungermannia	25		
Diatoma moniliformis	50	Caloneis bacillum	13	Lychnis	25		
Fragilaria capucina var. perminuta	50	Chamaesiphon confervicolus	13	Mentha aquatica	25		
Gomphonema truncatum	50	Cocconeis pediculus	13	Potamogeton natans	25		
Mougeotia W4	50	Cyclotella radiosa	13	Rhynchostegium ripariodes	25		
Phormidium favosum	50	Cymbella affinis	13	Riccardia	25		
Phormidium retzii	50	Diatoma vulgaris	13	Riccia	25		
Reimeria sinuata	50	Didymosphenia geminata	13	Senecio aquaticus	25		
Spirogyra W1	50	Eunotia arcus	13	Alisma plantago-aquatica	13		
Achnanthes flexella	38	Eunotia bilunaris	13	Berula erecta	13		
Achnanthidium biasolettiana	38	Eunotia pectinalis	13	Blindia acuta	13		
Ankistrodesmus falcatus	38	Fragilaria pulchella	13	Brachythecium rivulare	13		
Cocconeis placentula	38	Gomphonema micropus	13	Bryum pseudotriquetrum	13		
Frustulia rhomboides	38	Lyngbya martensiana	13	Callitriche platycarpa	13		
Frustulia rhomboides var. viridula	38	Microspora irregularis	13	Caltha palustris	13		
Gomphonema clavatum	38	Microspora tumidula	13	Carex rostrata	13		
<i>Gongrosira</i> sp.	38	Mougeotia W1	13	Dichodontium	13		
Meridion circulare var. constrictum	38	Mougeotia W5	13	Dicranella palustris	13		
Mougeotia W3	38	Navicula tripunctata	13	Eleocharis	13		
Navicula cryptocephala	38	Nitzschia fonticola	13	Equisetum fluviatile	13		
Navicula lanceolata	38	Nitzschia linearis	13	Geum rivulare	13		
Oedogonium W3	38	Oedogonium W7	13	Hydrocotyle vulgaris	13		
Rhoicosphenia abbreviata	38	Phormidium autumnale	13	Juncus bulbosus	13		
Spirogyra W3	38	Pinnularia subcapitata	13	Littorella uniflora	13		
Surirella brebissonii	38	Surirella angusta	13	Lunularia	13		
Ulothrix zonata	38	Zygnema W5	13	Marsupella emarginata	13		

River Type 12 (4 sites).

Macroinvertebrates % freq Macroinvertebrates contd. % freq Macroinvertebrates contd.	contd. % freq
Lumbriculus variegatus 100 Simulium argyreatum 75 Piscicola geometra	25
Stylodrilus heringianus100Tricladidia indet.50Siphlonurus lacustris	25
Tubificidae indet. 100 Pisidium subtruncatum 50 Baetis vernus	25
Enchytraeidae indet. 100 Nematoda indet. 50 Centroptilum luteolum	25
Lumbricidae indet. 100 Glossiphonia complanata 50 Heptagenia sulphurea	a 25
Serratella ignita 100 Erpobdella octoculata 50 Ecdyonurus torrentis	25
Baetis rhodani 100 Asellus aquaticus 50 Nemurella picteti	25
Rhithrogena semicolorata100Baetis scambus50Nemoura spp.	25
Ecdyonurus venosus 100 Baetis muticus 50 Perla bipunctata	25
Protonemura meyeri 100 Electrogena lateralis 50 Dinocras cephalotes	25
Esolus parallelepipedus 100 Ecdyonurus dispar 50 Ischnura elegans	25
Elmis aenea 100 Ecdyonurus insignis 50 Pyrrhosoma nymphula	a 25
Oulimnius tuberculatus 100 Paraleptophlebia cincta 50 Velia spp.	25
Limnius volckmari 100 Caenis luctuosa 50 Dryops spp.	25
Elodes spp.100Caenis rivulorum50Haliplus spp.	25
Rhyacophila dorsalis100Leuctra inermis50Brychius sp.	25
Polycentropus flavomaculatus 100 Chloroperla tripunctata 50 Hydroporus sp.	25
Hydropsyche siltalai100Calopteryx virgo50Stictonectes lepidus	25
Lepidostoma hirtum100Oreodytes sanmarkii50Helophorus spp.	25
Halesus radiatus100Oreodytes septentrionalis50Chimarra marginata	25
Sericostoma personatum 100 Stictotarsus duodecimpustulatus 50 Plectrocnemia genicul	lata 25
Tipula spp.100Hydrocyphon sp.50Polycentropus irrorata	a 25
Dicranota spp. 100 Wormaldia occipitalis 50 Tinodes waeneri	25
Ceratopogonidae indet. 100 Philopotamus monatus 50 Hydropsyche instabilis	s 25
Hemerodromia spp.100Plectrocnemia conspersa50Glossosoma spp.	25
Simulium argyreatum/variegatum group 100 Polycentropus kingi 50 Goera pilosa (Fbr)	25
Tanypodinae indet.100Lype reducta50Ithytrichia spp.	25
Orthocladiinae indet. 100 <i>Hydroptila</i> spp. 50 <i>Oxyethira</i> spp.	25
Chironominae indet. 100 <i>Mystacides</i> spp. 50 <i>Crunoecia irrorata</i>	25
Potamopyrgus antipodarum 75 Chaetopteryx villosa 50 Lasiocephala basalis	25
Ancylus fluviatilis 75 Limnephilus rhombicus 50 Athripsodes spp.	25
Lymnaea peregra 75 Odontocerum albicorne 50 Oecetis testacea	25
Pisidium casertanum 75 Eloeophila spp. 50 Ceraclea spp.	25
Gammarus duebeni75Antocha spp.50Anabolia nervosa	25
Hydracarina indet.75Atherix marginata50Drusus annulatus	25
Brachyptera risi 75 Limnophora spp. 50 Halesus digitatus	25
Amphinemura sulcicollis 75 Simulium cryophilum 50 Limnephilus flavicornis	is 25
Leuctra hippopus 75 Simulium vernum 50 Limnephilus lunatus	25
Isoperla grammatica 75 Simulium armoricanum 50 Potamophylax latipent	nis 25
Siphonoperla torrentium75Simulium reptans50Pedicia spp.	25
<i>Hydraena gracilis</i> 75 Prodiamesinae indet. 50 <i>Tricyphona</i> spp.	25
Orectochilus villosus 75 Valvata piscinalis 25 Helius spp.	25
Rhyacophila munda 75 Pisidium milium 25 Euphylidorea/Phylidor	<i>rea</i> spp. 25
Hydropsyche pellucidula 75 Pisidium nitidum 25 Dolichopodidae indet.	25
Agapetus spp.75Margaritifera margaritifera25Syrphidae indet.	25
Silo pallipes (Fabricius) 75 Spirosperma ferox 25 Simulium ornatum/inte trifasciatum	ermedium/ 25
Potamophylax cingulatus 75 Stylaria lacustris 25 Eukiefferiella spp.	25
Psychodidae indet. 75 Naididae indet. 25 Microtendipes pedellu	<i>is</i> 25
Chelifera spp. 75 Glossiphonia hereroclita 25	

River Type 12 contd.

% freq	Phytobenthos contd.	% freq	Macrophytes	% freq
100	Oedogonium W2	25	Conocephalum conicum	75
100	Oedogonium W7	25	Filipendula ulmaria	75
100	Oscillatoria sancta	25	Fortinalis squamosa	75
100	Phormidium autumnale	25	Oenanthe crocata	75
100	Phormidium favosum	25	Rhynchostegium ripariodes	75
100	Stigeoclonium sp.	25	Angelica sylvestris	50
100	Surirella angusta	25	Brachythecium plumosum	50
100	Surirella brebissonii	25	Bryum pseudotriquetrum	50
75	Tabellaria fenestrata	25	Dichodontium	50
75	Ulothrix tenerrima	25	Fontinalis antipyretica	50
75			Hyocomium armoricum	50
75			Iris pseudacorus	50
75			Juncus articulatus	50
50			Juncus effusus	50
				50
				50
				50
				50
				50 50
				50 50
				50
				50
				50
				50
			Valeriana	50
50			Alisma plantago-aquatica	25
50			Apium nodiflorum	25
50			Brachythecium rivulare	25
50			Brachythecium rutabulum	25
50			Callitriche hamulata	25
50			Callitriche stagnalis	25
25			Chiloscyphus polyanthos	25
25			Cladophora spp.	25
25			Equisetum arvense	25
25			Filamentous green algae	25
25			Glyceria fluitans	25
25			Hygrohypnum	25
25			Littorella uniflora	25
25			Mentha aquatica	25
25			Montia fontana	25
25			Myosotis scorpioides	25
				25
				25
				25
				25
				25
			-	
				25
				25
				25
25			Ranunculus penicillatus	25
25			Riccardia	25
	100 100 100 100 100 100 100 75 75 75 75 75 75 75 75 75 75 75 75 75	100 Oedogonium W2 100 Oscillatoria sancta 100 Phormidium autumnale 100 Phormidium favosum 100 Stigeoclonium sp. 100 Surirella angusta 100 Surirella brebissonii 75 Tabellaria fenestrata 75 Ulothrix tenerrima 75 50 50 50	100 Oedogonium W2 25 100 Oscillatoria sancta 25 100 Phormidium autunnale 25 100 Stigeoclonium sp. 25 100 Stigeoclonium sp. 25 100 Stigeoclonium sp. 25 100 Stigeoclonium sp. 25 100 Surinella angusta 25 100 Surinella brebissonii 25 15 Tabellaria fenestrata 25 75 Vuothrix tenerrima 25 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	100 Oedogonium W2 25 Caroacephalum conicum 100 Oedogonium W7 25 Filipendula ulmaria 100 Oradianti sancta 25 Fortinalis squamosa 100 Phormidium aluunnale 25 Oetanthe corocata 100 Phormidium aluunnale 25 Angelica sylvestris 100 Suiriella pebisisonii 25 Brachythecium plumosum 101 Suiriella fenestrata 25 Dichodonhum 101 Suiriella fenestrata 25 Dichodonhum 102 Ulathrix tenerrima 25 Fortinalis antipyretica 103 Ulathrix tenerrima 25 Fortinalis antipyretica 104 Hyoconhum armoticum His pesudacorus Juncus articulatus 105 Juncus articulatus Juncus articulatus Juncus articulatus 106 Myriciphylum atternitolium Pelia epiphyla 105 Raturnuclus flammula Raturnuclus flammula 106 Raturnuclus flammula Senecio aquaticus 107 Tabrinobyum Valeriana 108 Raturnuclus flammula Senecio aquaticus 109 Raturnuclus flammula Senecio aquaticus 100 Raturunuk solutum Senecio aquaticus

River Type 13 (5 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq
Lumbriculus variegatus	100	Electrogena lateralis	60	Paraleptophlebia cincta	20
Stylodrilus heringianus	100	Velia caprai	60	Nemoura cinerea	20
Tubificidae indet.	100	Oreodytes sanmarkii	60	Nemurella picteti	20
Enchytraeidae indet.	100	Philopotamus monatus	60	Chloroperla tripunctata	20
Lumbricidae indet.	100	Glossosoma boltoni	60	Hesperocorixa sahlbergi	20
Serratella ignita	100	Agapetus spp.	60	Haliplus lineatocollis	20
Baetis rhodani	100	Sericostoma personatum	60	Hydroporus nigrita	20
Rhithrogena semicolorata	100	Odontocerum albicorne	60	Hydroporus planus	20
Ecdyonurus venosus	100	<i>Tipula</i> spp.	60	Hydroporus tessellatus	20
Protonemura meyeri	100	Pedicia spp.	60	Oreodytes septentrionalis	20
Leuctra hippopus	100	Eloeophila spp.	60	Anacaena limbata	20
Leuctra inermis	100	Chelifera spp.	60	Galerucinae indet.	20
Isoperla grammatica	100	Simulium argyreatum	60	Wormaldia occipitalis	20
Siphonoperla torrentium	100	Chironominae indet.	60	Plectrocnemia geniculata	20
Esolus parallelepipedus	100	Potamopyrgus antipodarum	40	Lype reducta	20
Elmis aenea	100	Aulodrilus pluriseta	40	Tinodes waeneri	20
Oulimnius tuberculatus	100	Collembola indet.	40	Diplectrona felix	20
Limnius volckmari	100	Heptagenia sulphurea	40	Glossosoma conformis	20
Hydraena gracilis	100	Ecdyonurus torrentis	40	Ithytrichia spp.	20
Elodes spp.	100	Caenis rivulorum	40	Oxyethira spp.	20
Rhyacophila dorsalis	100	Nemoura avicularis	40	Drusus annulatus	20
Plectrocnemia conspersa	100	Perla bipunctata	40	Ecclisopteryx guttulata	20
Polycentropus flavomaculatus	100	Limnebius truncatellus	40	Halesus digitatus	20
Hydropsyche siltalai	100	Orectochilus villosus	40	Micropterna/Stenophylax group	20
Hydropsyche pellucidula	100	Agabus spp.	40	Dicronomyia/Neolimonia spp.	20
Chaetopteryx villosa	100	Helophorus spp.	40	Dixa puberula	20
Halesus radiatus	100	Anacaena globulus	40	Ceratopogonidae indet.	20
Dicranota spp.	100	Hydrocyphon spp.	40	Dasyhelea spp.	20
Wiedemannia/Clinocera spp.	100	Wormaldia subnigra	40	Culicidae indet.	20
Simuliidae indet.	100	Psychomyia pusilla	40	Rhagionidae indet.	20
Tanypodinae indet.	100	Hydropsyche instabilis	40	Limnophora spp.	20
Orthocladiinae indet.	100	Potamophylax cingulatus	40	Simulium cryophilum	20
Tricladidia indet.	80	Antocha spp.	40	Simulium vernum	20
Ancylus fluviatilis	80	Dolichopodidae indet.	40	Simulium armoricanum	20
Pisidium casertanum	80	Hemerodromia spp.	40	Simulium angustipes/velutinum group	20
Brachyptera risi	80	Simulium dunfellense/urbanum group	40		
Amphinemura sulcicollis	80	Simulium ornatum/intermedium group	40		
Rhyacophila munda	80	Simulium tuberosum	40		
Polycentropus kingi	80	Prodiamesinae indet.	40		
Silo pallipes	80	Lymnaea peregra	20		
Hydroptila spp.	80	Pisidium personatum	20		
Lepidostoma hirtum	80	Pisidium subtruncatum	20		
Psychodidae indet.	80	Margaritifera margaritifera	20		
Simulium argyreatum/variegatum group	80	Spirosperma ferox	20		
Simulium variegatum	80	Glossiphonia complanata	20		
Gammarus duebeni	60	Siphlonurus lacustris	20		
Hydracarina indet.	60	Centroptilum luteolum	20		
Baetis scambus	60	Ecdyonurus insignis	20		
Baetis muticus	60	Leptophlebia vespertina	20		
		. ,	-		

River Type 13 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq
Achnanthes oblongella	100	Cosmarium sp.17	20	Juncus articulatus	100
Achnanthidium minutissimum	100	Cymbella helvetica	20	Fortinalis squamosa	80
Fragilaria capucina	100	Cymbella microcephala	20	Racometrium	80
Fragilaria capucina var. vaucheriae	100	Diatoma mesodon	20	Rhynchostegium ripariodes	80
Gomphonema parvulum	100	Eunotia minor	20	Brachythecium plumosum	60
Cymbella gracilis	80	Fragilaria pulchella	20	Brachythecium rivulare	60
Eunotia bilunaris	80	Gomphonema clavatum	20	Chiloscyphus polyanthos	60
Hannea arcus	80	Gongrosira sp.	20	Conocephalum conicum	60
Nitzschia dissipata	80	Lemanea fluviatilis	20	Hygrohypnum	60
Tabellaria flocculosa	80	Meridion circulare var. constrictum	20	Polytrichum commune	60
Brachysira vitrea	60	Microspora sp.8	20	Ranunculus flammula	60
Bulbochaete sp.	60	Navicula gregaria	20	Rhizomnium punctatum	60
Cocconeis placentula	60	Navicula rhynchocephala	20	Blindia acuta	40
Cymbella silesiaca	60	Oedogonium W3	20	Callitriche stagnalis	40
Frustulia rhomboides	60	Oedogonium W4	20	Dicranella palustris	40
Gomphonema olivaceum	60	Oedogonium W5	20	Fissidens	40
Lyngbya martensiana	60	Oscillatoria brevis	20	Hyocomium armoricum	40
Mougeotia W4	60	Phormidium autumnale	20	Juncus effusus	40
Navicula lanceolata	60	Phormidium favosum	20	Oenanthe crocata	40
Audouinella hermannii	40	Phormidium retzii	20	Pellia epiphylla	40
Chamaesiphon incrustans	40	Pinnularia subcapitata	20	Scapania undulata	40
Cymbella minuta	40	Staurastrum sp.6	20	Alisma plantago-aquatica	20
Diatoma moniliformis	40	Surirella angusta	20	Angelica sylvestris	20
Diatoma tenuis	40	Ulothrix tenerrima	20	Bryum pseudotriquetrum	20
Eunotia implicata	40	Ulothrix zonata	20	Butomus umbellatus	20
Frustulia rhomboides var. viridula	40	Zygnema W1	20	Callitriche platycarpa	20
Gomphonema angustum	40	Zygnema W4	20	Carex rostrata	20
Gomphonema minutum	40			Carex versicaria	20
Gomphonema truncatum	40			Cladophora spp.	20
Meridion circulare	40			Dichodontium	20
Microspora tumidula	40			Equisetum arvense	20
, Monostroma sp.	40			, Filamentous green algae	20
Mougeotia W3	40			Filipendula ulmaria	20
Mougeotia W5	40			Fontinalis antipyretica	20
Navicula cryptotenella	40			Globular algae	20
Nitzschia palea	40			Jungermannia	20
Oscillatoria agardhii	40			Lunularia	20
Oscillatoria limosa	40			Lythrum salicaria	20
Reimeria sinuata	40			Marsupella emarginata	20
Spiroqyra W2	40			Mentha aquatica	20
Synedra ulna	40			Mnium hornum	20
Tabellaria fenestrata	40			Montia fontana	20
Achnanthes flexella	40 20			Pellia endiviifolia	20
Achnanthes petersenii	20			Persicaria hydropiper	20
Achnanthidium biasolettiana	20 20				20
				Senecio aquaticus	
Ankistrodesmus falcatus	20			Sphagnum	20
Calothrix sp.3	20			Valeriana	20
Closterium parvulum	20				

River Type 14 (2 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Phytobenthos	% freq	Macrophytes	% freq
Ancylus fluviatilis	100	Stylodrilus heringianus	50	Achnanthes oblongella	100	Fortinalis squamosa	100
Lumbriculus variegatus	100	Nematoda indet.	50	Achnanthidium minutissimum	100	Hyocomium armoricum	100
Enchytraeidae indet.	100	Asellus aquaticus	50	Audouinella hermannii	100	Racometrium	100
Lumbricidae indet.	100	Hydracarina indet.	50	Chamaesiphon incrustans	100	Scapania undulata	100
Ameletus inopinatus	100	Siphlonurus lacustris	50	Diatoma mesodon	100	Brachythecium plumosum	50
Serratella ignita	100	Baetis scambus	50	Fragilaria capucina	100	Brachythecium rivulare	50
Baetis vernus	100	Baetis muticus	50	Fragilaria capucina var. vaucheriae	100	Globular algae	50
Baetis rhodani	100	Ecdyonurus dispar	50	Gomphonema parvulum	100	Hygrohypnum	50
Rhithrogena semicolorata	100	Velia caprai	50	Gongrosira sp.	100	Juncus effusus	50
Electrogena lateralis	100	Helophorus spp.	50	Meridion circulare	100	Lemanea	50
Ecdyonurus venosus	100	Wormaldia occipitalis	50	Microspora tumidula	100	Marsupella emarginata	50
Brachyptera risi	100	Plectrocnemia conspersa	50	Mougeotia W3	100	Mnium hornum	50
Amphinemura sulcicollis	100	Hydropsyche pellucidula	50	Mougeotia W4	100	Pellia epiphylla	50
Protonemura meyeri	100	<i>Agapetus</i> spp.	50	Synedra ulna	100	Polytrichum commune	50
Leuctra hippopus	100	Oxyethira spp.	50	Tabellaria flocculosa	100	Rhizomnium punctatum	50
Leuctra inermis	100	Hydroptila spp.	50	Zygnema W3	100	Thamnobryum	50
Isoperla grammatica	100	Lepidostoma hirtum	50	Achnanthes petersenii	50		
Diura bicaudata	100	Drusus annulatus	50	Brachysira vitrea	50		
	100	Halesus digitatus			50		
Chloroperla tripunctata		-	50	Bulbochaete sp.			
Siphonoperla torrentium	100	Beraea maurus	50	Chamaesiphon confervicolus	50		
Esolus parallelepipedus	100	<i>Tipula</i> spp.	50	Cladophora glomerata	50		
Elmis aenea	100	Pedicia spp.	50	Cymbella gracilis	50		
Oulimnius tuberculatus	100	Cheilotrichia spp.	50	Cymbella minuta	50		
Limnius volckmari	100	Dolichopodidae indet.	50	Cymbella silesiaca	50		
Hydraena gracilis	100	Hemerodromia spp.	50	Eunotia bilunaris	50		
Dryops spp.	100	Simulium cryophilum	50	Eunotia implicata	50		
Oreodytes sanmarkii	100	Simulium armoricanum	50	Eunotia minor	50		
Curculionidae indet.	100	Chironominae indet.	50	Eunotia sp.1	50		
Elodes spp.	100			Frustulia rhomboides	50		
Rhyacophila dorsalis	100			Frustulia rhomboides var. viridula	50		
Rhyacophila munda	100			Gomphonema clavatum	50		
Philopotamus monatus	100			Gomphonema gracile	50		
Plectrocnemia geniculata	100			Gomphonema olivaceum	50		
Polycentropus flavomaculatus	100			Gomphonema truncatum	50		
Tinodes waeneri	100			Microspora sp.5	50		
Hydropsyche siltalai	100			Monostroma sp.	50		
Silo pallipes	100			Mougeotia W5	50		
Chaetopteryx villosa	100			Nitzschia dissipata	50		
Halesus radiatus	100			Nitzschia palea	50		
Potamophylax cingulatus	100			Oedogonium W3	50		
Sericostoma personatum	100			Oedogonium W4	50		
Odontocerum albicorne	100			Oscillatoria agardhii	50		
Dicranota spp.	100			Oscillatoria brevis	50		
Eloeophila spp.	100			Oscillatoria limosa	50		
Psychodidae indet.	100			Phormidium fragile	50		
Wiedemannia/Clinocera spp.	100			Pinnularia subcapitata	50		
	100						
Chelifera spp. Simulium argyreatum/ variegatum group	100			Spirogyra W1 Surirella angusta	50 50		
Tanypodinae indet.	100			Ulothrix tenerrima	50		
Orthocladiinae indet.	100			Zygnema W1	50		

River Type 21 (10 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq
Potamopyrgus antipodarum	100	Ecdyonurus insignis	70	Ecdyonurus dispar	30	Gyraulus albus	10
Ancylus fluviatilis	100	Amphinemura sulcicollis	70	Paraleptophlebia cincta	30	Arminger crista	10
Tubificidae indet.	100	Oreodytes septentrionalis	70	Caenis luctuosa	30	Pisidium hibernicum	10
Enchytraeidae indet.	100	Curculionidae indet.	70	Brychius elevatus	30	Pisidium milium	10
Lumbricidae indet.	100	Agapetus spp.	70	Cyrnus trimaculatus	30	Lumbriculidae indet.	10
Gammarus duebeni	100	Potamophylax latipennis	70	Plectrocnemia geniculata	30	Aulodrilus pluriseta	10
Serratella ignita	100	Odontocerum albicorne	70	Lype reducta	30	Tubifex ignotus	10
Baetis rhodani	100	Psychodidae indet.	70	Lasiocephala basalis	30	Stylaria lacustris	10
Baetis muticus	100	Wiedemannia/Clinocera spp.	70	Anabolia nervosa	30	Gordioidae indet.	10
Rhithrogena semicolorata	100	Prodiamesinae indet.	70	Drusus annulatus	30	Asellus meridianus	10
Ecdyonurus venosus	100	Bathyomphalus contortus	60	Limnephilus lunatus	30	Collembola indet.	10
Protonemura meyeri	100	Lymnaea peregra	60	Beraeodes minutus	30	Nemurella picteti	10
Leuctra hippopus	100	Asellus aquaticus	60	Antocha spp.	30	Leuctra nigra	10
						-	
Esolus parallelepipedus	100	Centroptilum luteolum	60	Simulium cryophilum	30	Dinocras cephalotes	10
Elmis aenea	100	Heptagenia sulphurea	60	Simulium variegatum	30	Gerris lacustris	10
Limnius volckmari	100	Nemoura avicularis	60	Ansius leucostoma	20	Gerris najas	10
Hydraena gracilis	100	Orectochilus villosus	60	Lymnaea truncatula	20	Notonecta glauca	10
Rhyacophila dorsalis	100	Stictotarsus duodecimpustulatus	60	Pisidium nitidum	20	Callicorixa praeusta	10
Hydropsyche pellucidula	100	Elodes spp.	60	Pisidium personatum	20	Hydraena puchella	10
Silo pallipes	100	Rhyacophila munda	60	Spirosperma ferox	20	Gyrinus caspius	10
Halesus radiatus	100	Polycentropus flavomaculatus	60	Gordius sp.	20	Hydroporus pubescens	10
Potamophylax cingulatus	100	Psychomyia pusilla	60	Siphlonurus lacustris	20	Hydroporus tessellatus	10
<i>Tipula</i> spp.	100	Glossosoma spp.	60	Ephemera danica	20	Hydroporus obsoletus	10
Dicranota spp.	100	Athripsodes spp.	60	Capnia bifrons	20	Stictonectes lepidus	10
Simuliidae indet.	100	Simulium ornatum/ intermedium/trifasciatum group	60	Calopteryx virgo	20	Nebrioporus depressus elegans complex	10
Orthocladiinae indet.	100	Simulium argyreatum/ variegatum group	60	Hesperocorixa sahlbergi	20	Megasternum obscurum	10
Pisidium casertanum	90	Tricladidia indet.	50	Micronecta poweri	20	Laccobius sinuatus	10
Caenis rivulorum	90	Pisidium subtruncatum	50	Gyrinus substriatus	20	Paracymus scutellaris	10
Leuctra inermis	90	Rhyacodrilus coccineus	50	Gyrinus urinator	20	Osmylus fulvicephalus	10
Perla bipunctata	90	Nematoda indet.	50	Dryops spp.	20	Wormaldia subnigra	10
Siphonoperla torrentium	90	Helobdella stagnalis	50	Dytiscus spp.	20	Polycentropus irrorata	10
Oulimnius tuberculatus	90	Velia spp.	50	Helophorus spp.	20	Tinodes waeneri	10
Hydropsyche siltalai	90	Haliplus lineatocollis	50	Anacaena globulus	20	Tinodes maculicornis	10
Sericostoma personatum	90	Plectrocnemia conspersa	50	Chrysomelidae indet.	20	Hydropsyche angustipennis	10
Ceratopogonidae indet.	90	Hydropsyche instabilis	50	Hydrocyphon spp.	20	Crunoecia irrorata	10
Chelifera spp.	90	Goera pilosa	50	Philopotamus monatus	20	Glyphotaelius pellicidus	10
Tanypodinae indet.	90	Chaetopteryx villosa	50	Polycentropus kingi	20	Beraea maurus	10
Lumbriculus variegatus	80	Limnophora spp.	50	Lype phaeopa	20	Pedicia spp.	10
Stylodrilus heringianus	80	Glossiphonia hereroclita	40	Diplectrona felix	20	Dixa spp.	10
Hydracarina indet.	80	Piscicola geometra	40	Silo nigricornis	20	Syrphidae indet.	10
Brachyptera risi	80	Electrogena lateralis	40	Mystacides spp.	20	Atherix marginata	10
		Chloroperla tripunctata			20	-	
Isoperla grammatica Oroodutos sanmarkii	80		40	Oecetis testacea		Simulium vernum	10 10
Oreodytes sanmarkii	80	Hydraena riparia	40	Ecclisopteryx guttulata	20	Simulium armoricanum	10
Ithytrichia spp.	80	Limnebius truncatellus	40	Limnephilus rhombicus	20	Simulium equinum/lineatum group	10
Lepidostoma hirtum	80	Nebrioporus depressus elegans	40	Micropterna/Stenophylax group		Simulium argyreatum	10
Eloeophila spp.	80	Hydroptila spp.	40	Orimarga spp.	20	Simulium tuberosum	10
Hemerodromia spp.	80	Halesus digitatus	40	Dixa nebulosa	20	Brilla spp.	10
Chironominae indet.	80	Simulium ornatum/intermedium group	40	Dixa maculata/nubilipennis	20	Eukiefferiella gracei	10
Classiphania samplanata	70	Simulium reptans	40	Stratiomyidae indet.	20	Psectrocladius (Psectrocladius) sordidellus	10
Glossiphonia complanata						30/0/02/03	
Erpobdella octoculata	70	Limnodrilus hoffmeisteri	30	Simulium equinum	20	Microtendipes pedellus	10

River Type 21 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq	Macrophytes contd.	% freq
Achnanthidium minutissimum	100	Didymosphenia geminata	20	Filipendula ulmaria	100	Sparganium emersum	20
Cocconeis placentula	100	Frustulia rhomboides	20	Valeriana	80	Thamnobryum	20
Cymbella minuta	100	Gomphonema micropus	20	Chiloscyphus polyanthos	70	Alisma lanceolatum	10
Gomphonema parvulum	100	Heribaudiella fluviatilis	20	Cinclidotus fontinaloides	70	Alisma plantago-aquatica	10
Navicula gregaria	100	Hildenbrandia rivularis	20	Conocephalum conicum	70	Brachythecium rivulare	10
Nitzschia palea	100	Lemanea fluviatilis	20	Juncus effusus	70	Callitriche hamulata	10
Fragilaria capucina var. vaucheriae	90	Microspora crassior	20	Angelica sylvestris	60	Cladophora spp.	10
Navicula lanceolata	90	Monostroma sp.	20	Equisetum arvense	60	Dichodontium	10
Nitzschia dissipata	90	Phormidium retzii	20	Fontinalis antipyretica	60	Eleocharis	10
Reimeria sinuata	90	Surirella angusta	20	Mentha aquatica	60	Equisetum palustre	10
Cymbella silesiaca	80	Tabellaria flocculosa	20	Oenanthe crocata	60	Glyceria plicata	10
Gomphonema olivaceum	80	Achnanthes petersenii	10	Rhynchostegium ripariodes	60	Hyocomium armoricum	10
Meridion circulare	80	Brachysira vitrea	10	Apium nodiflorum	50	Lemna minor	10
Achnanthes oblongella	70	Cymbella helvetica	10	Caltha palustris	50	Mnium hornum	10
Fragilaria capucina	70	Cymbella proxima	10	Juncus articulatus	50	Myosotis scorpioides	10
Gomphonema angustum	70	Diatoma ehrenbergii	10	Glyceria fluitans	40	Pellia epiphylla	10
Synedra ulna	70	Eunotia arcus	10	Butomus umbellatus	30	Potamogeton crispus	10
Ulothrix zonata	70	Eunotia bilunaris	10	Callitriche stagnalis	30	Scapania undulata	10
Achnanthes lanceolata	60	Fragilaria capucina var. capitellata	10	Filamentous green algae	30	Senecio palustre	10
Amphora pediculus	60	Fragilaria capucina var. perminuta	10	Geum rivulare	30	Sparganium erectum	10
Audouinella hermannii	60	Frustulia rhomboides var. viridula	10	Hypericum tetrapterum	30	Stachys palustris	10
Chamaesiphon incrustans	60	Gomphonema acuminatum	10	Lychnis	30		
, Cladophora glomerata	60	, Meridion circulare var. constrictum	10	y Lythrum salicaria	30		
Navicula cryptotenella	60	Microspora irregularis	10	Marchantia polymorpha	30		
Navicula halophila	60	Mougeotia W3	10	Myriophyllum alternifolium	30		
Navicula tripunctata	60	Mougeotia W5	10	Phalaris arundinacea	30		
Surirella brebissonii	60	Navicula cryptocephala	10	Rhizomnium punctatum	30		
Cocconeis pediculus	50	Oedogonium W3	10	Scrophularia	30		
Gomphonema minutum	50	Oedogonium W4	10	Veronica beccabunga	30		
Phormidium fragile	50	Oedogonium W5	10	Amblystegium riparium	20		
Achnanthes flexella	40	Oscillatoria agardhii	10	Brachythecium plumosum	20		
	40	Oscillatoria limosa	10		20		
Achnanthidium biasolettiana				Calliergon cuspidatum			
Diatoma moniliformis	40	Oscillatoria sancta	10	Callitriche obtusangula	20		
Hannea arcus	40	Spirogyra W3	10	Callitriche platycarpa	20		
Phormidium favosum	40	Stigeoclonium sp.	10	Carex versicaria	20		
Cymbella affinis	30			Equisetum fluviatile	20		
Cymbella gracilis	30			Fissidens	20		
Diatoma vulgaris	30			Fortinalis squamosa	20		
Fragilaria pulchella	30			Hygrohypnum	20		
Gomphonema truncatum	30			Juncus inflexus	20		
Gongrosira sp.	30			Persicaria hydropiper	20		
Microspora tumidula	30			Plagiomnium undulatum	20		
Navicula rhynchocephala	30			Potamogeton natans	20		
Nitzschia linearis	30			Racometrium	20		
Oscillatoria brevis	30			Ranunculus flammula	20		
Phormidium autumnale	30			Ranunculus peltatus	20		
Rhoicosphenia abbreviata	30			Riccia	20		
Caloneis bacillum	20			Rorippa amphibia	20		
Cyclotella meneghiniana	20			Rorippa nasturtium-aquaticum	20		
Diatoma tenuis	20			Senecio aquaticus	20		

River Type 22 (12 sites).

Macroinvertebrates	%freq	Macroinvertebrates contd.	%freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq
Ancylus fluviatilis	100	Glossosoma spp.	75	Gyrinus urinator	25	Lype phaeopa	8
Lumbricidae indet.	100	Lepidostoma hirtum	75	Stictotarsus duodecimpustulatus	25	Tinodes waeneri	8
Gammarus duebeni	100	Drusus annulatus	75	Helophorus spp.	25	Diplectrona felix	8
Ephemerella ignita	100	Hemerodromia spp.	75	Wormaldia occipitalis	25	Hydropsyche contubernalis	8
Baetis rhodani	100	Pisidium casertanum	67	Cyrnus trimaculatus	25	Goera pilosa	8
Baetis muticus	100	Perla bipunctata	67	Pedicia spp.	25	Oxyethira spp.	8
Rhithrogena semicolorata	100	Orectochilus villosus	67	Simulium cryophilum	25	Lasiocephala basalis	8
Ecdyonurus venosus	100	Oreodytes septentrionalis	67	Simulium reptans	25	Limnephilus lunatus	8
Protonemura meyeri	100	Rhyacophila munda	67	Lymnaea peregra	17	Stenophylax permistus	8
Leuctra hippopus	100	Ithytrichia spp.	67	Pisidium personatum	17	Beraea pullata	8
Leuctra inermis	100	Athripsodes spp.	67	Limnodrilus hoffmeisteri	17	Pilaria spp.	8
Isoperla grammatica	100	Odontocerum albicorne	67	Glossiphonia hereroclita	17	Orimarga spp.	8
Siphonoperla torrentium	100	Psychodidae indet.	67	Ecdyonurus dispar	17	Lipsothrix spp.	8
Esolus parallelepipedus	100	Tricladidia indet.	58	Ephemera danica	17	Rhypholophus varius	8
Elmis aenea	100	Rhyacodrilus coccineus	58	Leuctra nigra	17	Dixa puberula	8
Limnius volckmari	100	Electrogena lateralis	58	Gerris najas	17	Rhagionidae indet.	8
Hydraena gracilis	100	Psychomyia pusilla	58	Gyrinus substriatus	17	Muscidae indet.	8
Rhyacophila dorsalis	100	Simulium argyreatum	58	Haliplus lineatocollis	17	Empididae indet.	8
Hydropsyche pellucidula	100	Heptagenia sulphurea	50	Brychius elevatus	17	Sciomyzidae indet.	8
Agapetus spp.	100	Ecdyonurus torrentis	50	Agabus spp.	17	Simulium armoricanum	8
Silo pallipes	100	Paraleptophlebia cincta	50	Curculionidae indet.	17	Simulium ornatum/	8
						intermedium group	
Halesus radiatus	100	Limnebius truncatellus	50	Plectrocnemia geniculata	17	Simulium tuberosum	8
Sericostoma personatum	100	Hydroptila spp.	50	Lype reducta	17		
Simuliidae indet.	100	Chaetopteryx villosa	50	Halesus digitatus	17		
Tanypodinae indet.	100	Ceratopogonidae indet.	50	Micropterna/Stenophylax group	17		
Orthocladiinae indet.	100	Pisidium subtruncatum	42	Beraea maurus	17		
Tubificidae indet.	92	Nematoda indet.	42	Simulium vernum	17		
Ecdyonurus insignis	92	Glossiphonia complanata	42	Lymnaea palustris	8		
Oreodytes sanmarkii	92	Erpobdella octoculata	42	Pisidium nitidum	8		
Elodes spp.	92	Centroptilum luteolum	42	Aulodrilus pluriseta	8		
Hydropsyche siltalai	92	Chloroperla tripunctata	42	Stylaria lacustris	8		
Potamophylax cingulatus	92	Philopotamus monatus	42	Gordius spp.	8		
Dicranota spp.	92	Ecclisopteryx guttulata	42	Erpobdella testacea	8		
Eloeophila spp.	92	Limnophora spp.	42	Asellus aquaticus	8		
Chironominae indet.	92	Simulium ornatum/ intermedium/trifasciatum group	42	Siphlonurus spp.	8		
Lumbriculus variegatus	83	Baetis scambus	33	Caenis luctuosa	8		
Enchytraeidae indet.	83	Nemoura avicularis	33	Nemoura cinerea	8		
Hydracarina indet.	83	Hydraena riparia	33	Nemurella picteti	8		
Caenis rivulorum	83	Dryops spp.	33	Capnia bifrons	8		
Brachyptera risi	83	Hydrocyphon spp.	33	Hesperocorixa sahlbergi	8		
Amphinemura sulcicollis	83	Polycentropus kingi	33	Micronecta poweri	8		
<i>Tipula</i> spp.	83	Hydropsyche instabilis	33	Hydraena minutissima	8		
Wiedemannia/Clinocera spp.	83	Potamophylax latipennis	33	Hydraena testacea	8		
Chelifera spp.	83	Antocha spp.	33	Ochthebius exsculptus	8		
Simulium argyreatum/ variegatum group	83	Simulium variegatum	33	Gyrinus caspius	8		
Potamopyrgus antipodarum	75	Prodiamesinae indet.	33	Haliplus confinis	8		
Stylodrilus heringianus	75	Lymnaea truncatula	25	Hydroporus erythrocephalus	8		
Oulimnius tuberculatus	75	Spirosperma ferox	25	Anacaena globulus	8		
Plectrocnemia conspersa	75	Dinocras cephalotes	25	Laccobius spp.	8		

River Type 22 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq	Macrophytes contd.	% freq
Achnanthidium minutissimum	100	Oscillatoria sancta	25	Rhynchostegium ripariodes	100	Riccia	17
Cocconeis placentula	100	Stigeoclonium sp.	25	Conocephalum conicum	83	Rorippa amphibia	17
Cymbella minuta	100	Achnanthidium biasolettiana	17	Filipendula ulmaria	75	Scapania undulata	17
Fragilaria capucina	100	Chamaesiphon confervicolus	17	Fontinalis antipyretica	67	Sparganium erectum	17
Cymbella silesiaca	92	Cymbella helvetica	17	Angelica sylvestris	58	Amblystegium fluviatile	8
Fragilaria capucina var. vaucheriae	92	Cymbella microcephala	17	Chiloscyphus polyanthos	58	Carex riparia	8
Gomphonema parvulum	92	Diatoma mesodon	17	Juncus effusus	58	Carex versicaria	8
Navicula gregaria	83	Eunotia minor	17	Mentha aquatica	58	Eleocharis	8
Nitzschia dissipata	83	Frustulia rhomboides var. viridula	17	Cladophora spp.	50	Fissidens	8
Nitzschia palea	83	Gomphonema acuminatum	17	Equisetum arvense	50	Hydrocotyle vulgaris	8
Reimeria sinuata	83	Hildenbrandia rivularis	17	Juncus articulatus	50	Hyocomium armoricum	8
Achnanthes oblongella	75	Lemanea fluviatilis	17	Marchantia polymorpha	50	Juncus inflexus	8
Navicula lanceolata	75	Meridion circulare var. constrictum	17	Brachythecium rivulare	42	Jungermannia	8
Phormidium fragile	75	Microspora crassior	17	Cinclidotus fontinaloides	42	Lychnis	8
Gomphonema angustum	67	Mougeotia W3	17	Pellia endiviifolia	42	Lysimachia vulgaris	8
Gomphonema olivaceum	67	Mougeotia W4	17	Pellia epiphylla	42	Mimulus guttatus	8
Achnanthes flexella	58	Mougeotia W5	17	Ranunculus flammula	42	Montia fontana	8
Achnanthes lanceolata	58	Navicula cryptocephala	17	Brachythecium plumosum	33	Myosotis scorpioides	8
				Callitriche stagnalis	33	Phalaris arundinacea	8
Cladophora glomerata	58	Navicula halophila	17	C C			
Gomphonema minutum	58	Navicula rhynchocephala	17	Brachythecium rutabulum	25	Philonotis fontana	8
Surirella brebissonii	58	Navicula tripunctata	17	Caltha palustris	25	Senecio aquaticus	8
Synedra ulna	58	Oedogonium W2	17	Dichodontium	25	Senecio palustre	8
Chamaesiphon incrustans	50	Oedogonium W5	17	Filamentous green algae	25	Sparganium emersum	8
Cocconeis pediculus	50	Oscillatoria brevis	17	Globular algae	25		
Diatoma moniliformis	50	Oscillatoria limosa	17	Hygrohypnum	25		
Fragilaria pulchella	50	Phormidium autumnale	17	Iris pseudacorus	25		
Gongrosira sp.	50	Phormidium retzii	17	Lythrum salicaria	25		
Ulothrix zonata	50	Spirogyra W3	17	Oenanthe crocata	25		
Amphora pediculus	42	Surirella angusta	17	Persicaria hydropiper	25		
Audouinella hermannii	42	Ulothrix tenuissima	17	Racometrium	25		
Gomphonema truncatum	42	Achnanthes exigua	8	Rhizomnium punctatum	25		
Lyngbya martensiana	42	Bulbochaete sp.	8	Rorippa nasturtium-aquaticum	25		
Meridion circulare	42	Caloneis bacillum	8	Stachys palustris	25		
Oscillatoria agardhii	42	Closterium parvulum	8	Thamnobryum	25		
Phormidium favosum	42	Diatoma vulgaris	8	Valeriana	25		
Tabellaria flocculosa	42	Eunotia bilunaris	8	Veronica beccabunga	25		
Cymbella gracilis	33	Eunotia pectinalis	8	Apium nodiflorum	17		
Diatoma tenuis	33	Fragilaria capucina var. perminuta	8	Bryum pseudotriquetrum	17		
Nitzschia linearis	33	Frustulia rhomboides	8	Carex rostrata	17		
Rhoicosphenia abbreviata	33	Gomphonema micropus	8	Equisetum fluviatile	17		
Spirogyra W1	33	Microspora irregularis	8	Fortinalis squamosa	17		
Spirogyra W2	33	Microspora sp.11	8	Geum rivulare	17		
Brachysira vitrea	25	Monostroma sp.	8	Glyceria fluitans	17		
Cymbella affinis	25	Navicula sp.12	8	Mnium hornum	17		
Didymosphenia geminata	25	Nitzschia fonticola	8	Myriophyllum alternifolium	17		
Eunotia arcus	25	Oedogonium W3	8	Plagiomnium rostratum	17		
Hannea arcus	25	Oedogonium W4	8	Plagiomnium undulatum	17		
Microspora tumidula	25			Ranunculus peltatus	17		
Navicula cryptotenella	25			Ranunculus penicillatus	17		

River Type 23 (4 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates <i>contd.</i>	% freq
Potamopyrgus antipodarum	100	Polycentropus flavomaculatus	75	Gyrinus substriatus	25
Lumbricidae indet.	100	Psychomyia pusilla	75	Gyrinus caspius	25
Gammarus duebeni	100	Hydropsyche pellucidula	75	Dryops spp.	25
Ephemerella ignita	100	Ithytrichia spp.	75	Haliplus lineatocollis	25
Baetis rhodani	100	Odontocerum albicorne	75	Hydroporus nigrita	25
Baetis muticus	100	Tricladidia indet.	50	Stictonectes lepidus	25
Rhithrogena semicolorata	100	Lymnaea peregra	50	Stictotarsus duodecimpustulatus	25
Electrogena lateralis	100	Pisidium casertanum	50	Agabus bipustulatus	25
Ecdyonurus venosus	100	Enchytraeidae indet.	50	Helophorus spp.	25
Ecdyonurus insignis	100	Nematoda indet.	50	Laccobius striatulus	25
Caenis rivulorum	100	Heptagenia sulphurea	50	Cyrnus trimaculatus	25
Brachyptera risi	100	Paraleptophlebia cincta	50	Polycentropus kingi	25
Protonemura meyeri	100	Limnebius truncatellus	50	Lype reducta	25
Leuctra hippopus	100	Orectochilus villosus	50	Tinodes waeneri	25
Leuctra inermis	100	Oreodytes septentrionalis	50	Tinodes maculicornis	25
Isoperla grammatica	100	Curculionidae indet.	50	Hydropsyche instabilis	25
Perla bipunctata	100	Hydrocyphon spp.	50	Silo nigricornis	25
Esolus parallelepipedus	100	Wormaldia spp.	50	Ecclisopteryx guttulata	25
Elmis aenea	100	Agapetus fuscipes	50	Potamophylax latipennis	25
Limnius volckmari	100	Oxyethira spp.	50	Tricyphona spp.	25
Hydraena gracilis	100	Hydroptila spp.	50	Antocha spp.	25
Oreodytes sanmarkii	100	Lepidostoma hirtum	50	Dixa puberula	25
	100		50		25
Elodes spp.		Lasiocephala basalis		Ceratopogonidae indet.	
Rhyacophila dorsalis	100	Chaetopteryx villosa	50	Stratiomyidae indet.	25
Plectrocnemia conspersa	100	Drusus annulatus	50	Limnophora spp.	25
Hydropsyche siltalai	100	Sericostoma personatum	50	Chelifera spp.	25
Glossosoma spp.	100	Pedicia spp.	50	Scatophagidae indet.	25
Silo pallipes	100	Eloeophila spp.	50	Simulium vernum	25
Halesus radiatus	100	Hemerodromia spp.	50	Simulium armoricanum	25
Potamophylax cingulatus	100	Sciomyzidae indet.	50	Simulium ornatum/intermedium/trifasciatum group	25
Tipula spp.	100	Simulium cryophilum	50	Simulium ornatum/intermedium group	25
Dicranota spp.	100	Simulium argyreatum	50	Simulium tuberosum	25
Psychodidae indet.	100	Simulium variegatum	50	Simulium noelleri	25
Wiedemannia/Clinocera spp.	100	Pisidium personatum	25	Prodiamesinae indet.	25
Simulium argyreatum/variegatum group	100	Pisidium subtruncatum	25	Eukiefferiella claripennis	25
Tanypodinae indet.	100	Stylodrilus heringianus	25		
Orthocladiinae indet.	100	Rhyacodrilus coccineus	25		
Chironomidae indet.	100	Erpobdella octoculata	25		
Chironominae indet.	100	Piscicola geometra	25		
Ancylus fluviatilis	75	Haemopis sanguisuga	25		
Lymnaea truncatula	75	Siphlonurus lacustris	25		
Lumbriculus variegatus	75	Centroptilum luteolum	25		
Tubificidae indet.	75	Ecdyonurus torrentis	25		
Hydracarina indet.	75	Ecdyonurus dispar	25		
Baetis scambus	75	Nemoura avicularis	25		
Amphinemura sulcicollis	75	Leuctra nigra	25		
Siphonoperla torrentium	75	Dinocras cephalotes	25		
Oulimnius tuberculatus	75	<i>Velia</i> spp.	25		
Rhyacophila munda	75	Gerris lacustris	25		
Philopotamus monatus	75	Callicorixa praeusta	25		

River Type 23 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq
Achnanthidium minutissimum	100	Meridion circulare var. constrictum	25	Rhynchostegium ripariodes	100
Cocconeis pediculus	100	Mougeotia W4	25	Chiloscyphus polyanthos	75
Cocconeis placentula	100	Navicula cryptotenella	25	Cladophora spp.	75
Cymbella minuta	100	Navicula sp.12	25	Conocephalum conicum	75
Cymbella silesiaca	100	Navicula sp.8	25	Filipendula ulmaria	75
Gomphonema olivaceum	100	Oscillatoria agardhii	25	Mnium hornum	75
Gomphonema parvulum	100	Phormidium fragile	25	Plagiomnium rostratum	75
Navicula lanceolata	100	Phormidium retzii	25	Thamnobryum	75
Reimeria sinuata	100	Rhoicosphenia abbreviata	25	Brachythecium rivulare	50
Achnanthes oblongella	75	Spirogyra W1	25	Calliergon cuspidatum	50
Audouinella hermannii	75	Surirella brebissonii	25	Cinclidotus fontinaloides	50
Cladophora glomerata	75	Tabellaria fenestrata	25	Equisetum arvense	50
Fragilaria capucina	75	Ulothrix tenuissima	25	Pellia epiphylla	50
Gomphonema angustum	75			Riccardia	50
Hildenbrandia rivularis	75			Amblystegium fluviatile	25
Meridion circulare	75			Angelica sylvestris	25
Monostroma sp.	75			Apium nodiflorum	25
Navicula gregaria	75			Brachythecium plumosum	25
Navicula halophila	75			Dichodontium	25
Nitzschia dissipata	75			Dicranella palustris	25
Nitzschia palea	75			Filamentous green algae	25
Synedra ulna	75			Fontinalis antipyretica	25
Ulothrix zonata	75			Geum rivulare	25
Amphora pediculus	50			Hygrohypnum	25
Diatoma moniliformis	50			Hyocomium armoricum	25
Fragilaria capucina var. vaucheriae	50			Juncus articulatus	25
Fragilaria pulchella	50			Juncus effusus	25
Gomphonema minutum	50			Lunularia	25
Gomphonema truncatum	50			Lychnis	25
Gongrosira sp.	50			Marchantia polymorpha	25
Navicula tripunctata	50			Myosotis scorpioides	25
Tabellaria flocculosa	50			Oenanthe crocata	25
Achnanthes flexella	25			Pellia endiviifolia	25
Achnanthes lanceolata	25			Philonotis fontana	25
Achnanthidium biasolettiana	25			Ranunculus flammula	25
Ankistrodesmus falcatus	25			Rorippa amphibia	25
Caloneis bacillum	25				
Chamaesiphon confervicolus	25				
Cymbella helvetica	25				
Cymbella microcephala	25				
Cymbella proxima	25				
Diatoma tenuis	25				
Didymosphenia geminata	25				
Eunotia bilunaris	25				
Eunotia minor	25				
Fragilaria construens aff. F. construens	25				
Gomphonema micropus	25				
Hannea arcus	25				
Lyngbya martensiana	25				

River Type 24 (1 site).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Phytobenthos	% freq	Macrophytes	% freq
Potamopyrgus antipodarum	100	Allotrichia spp.	100	Achnanthes lanceolata	100	Calliergon cuspidatum	100
Ancylus fluviatilis	100	Chaetopteryx villosa	100	Achnanthes petersenii	100	Chiloscyphus polyanthos	100
Lymnaea truncatula	100	Drusus annulatus	100	Achnanthidium minutissimum	100	Cinclidotus fontinaloides	100
Pisidium casertanum	100	Halesus radiatus	100	Amphora pediculus	100	Cladophora spp.	100
Stylodrilus heringianus	100	Potamophylax cingulatus	100	Aulacoseira granulata	100	Dichodontium	100
Tubificidae indet.	100	Beraea maurus	100	Cocconeis pediculus	100	Filipendula ulmaria	100
Enchytraeidae indet.	100	Sericostoma personatum	100	Cocconeis placentula	100	Hygrohypnum	100
Lumbricidae indet.	100	Odontocerum albicorne	100	Cyclotella radiosa	100	Hyocomium armoricum	100
Gammarus duebeni	100	Dicranota spp.	100	Cymbella minuta	100	Iris pseudacorus	100
Hydracarina indet.	100	Dixa puberula	100	Cymbella silesiaca	100	Juncus articulatus	100
Collembola indet.	100	Ceratopogonidae indet.	100	Diatoma moniliformis	100	Juncus effusus	100
Serratella ignita	100	Psychodidae indet.	100	Diatoma tenuis	100	Juncus inflexus	100
Baetis scambus	100	Limnophora spp.	100	Fragilaria capucina	100	Lychnis	100
Baetis rhodani	100	Wiedemannia/Clinocera spp.	100	Fragilaria capucina var. vaucheriae	100	Marchantia polymorpha	100
Baetis muticus	100	Simulium argyreatum/ variegatum group	100	Gomphonema angustum	100	Pellia endiviifolia	100
Rhithrogena semicolorata	100	Tanypodinae indet.	100	Gomphonema gracile	100	Plagiomnium undulatum	100
Electrogena lateralis	100	Orthocladiinae indet.	100	Gomphonema olivaceum	100	Polytrichum commune	100
Ecdyonurus venosus	100	Chironominae indet.	100	Gomphonema parvulum	100	Rhynchostegium ripariodes	100
Caenis rivulorum	100			Heribaudiella fluviatilis	100	Thamnobryum	100
Brachyptera risi	100			Hildenbrandia rivularis	100		
Amphinemura sulcicollis	100			Navicula cryptotenella	100		
Protonemura meyeri	100			Nitzschia dissipata	100		
Leuctra hippopus	100			Nitzschia linearis	100		
Leuctra inermis	100			Nitzschia palea	100		
Isoperla grammatica	100			Synedra ulna	100		
Dinocras cephalotes	100						
Chloroperla tripunctata	100						
Siphonoperla torrentium	100						
Esolus parallelepipedus	100						
Elmis aenea	100						
Oulimnius tuberculatus	100						
Limnius volckmari	100						
Hydraena gracilis	100						
Limnebius truncatellus	100						
Gyrinus substriatus	100						
Anacaena globulus	100						
Galerucinae indet.	100						
Elodes spp.	100						
Hydrocyphon spp.	100						
Rhyacophila dorsalis	100						
Rhyacophila munda	100						
Philopotamus monatus	100						
Plectrocnemia conspersa	100						
Polycentropus spp.	100						
Tinodes dives	100						
Diplectrona felix	100						
Hydropsyche instabilis	100						
Agapetus fuscipes	100						
Silo pallipes	100						
Hydroptila spp.	100						

River Type 31 (1 site).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Phytobenthos	% freq	Macrophytes	% freq
Theodoxus fluviatilis	100	Oulimnius tuberculatus	100	Achnanthes lanceolata	100	Alisma plantago-aquatica	100
Bithynia tentaculata	100	Limnius volckmari	100	Achnanthes oblongella	100	Amblystegium riparium	100
Potamopyrgus antipodarum	100	Hydraena riparia	100	Achnanthidium biasolettiana	100	Brachythecium rivulare	100
Ancylus fluviatilis	100	Orectochilus villosus	100	Achnanthidium minutissimum	100	Butomus umbellatus	100
Gyraulus albus	100	Dryops spp.	100	Amphora pediculus	100	Callitriche platycarpa	100
Lymnaea peregra	100	Brychius elevatus	100	Caloneis bacillum	100	Caltha palustris	100
Physa fontinalis	100	Hydroporus tessellatus	100	Chamaesiphon incrustans	100	Cinclidotus fontinaloides	100
Pisidium casertanum	100	Oreodytes sanmarkii	100	Chamaesiphon confervicolus	100	Cladophora spp.	100
Pisidium nitidum	100	Nebrioporus depressus elegans	100	Cladophora glomerata	100	Eleocharis	100
Pisidium subtruncatum	100	Rhyacophila dorsalis	100	Cocconeis pediculus	100	Elodea canadensis	100
Lumbriculus variegatus	100	Rhyacophila munda	100	Cocconeis placentula	100	Equisetum arvense	100
Stylodrilus heringianus	100	Polycentropus flavomaculatus	100	Cyclotella meneghiniana	100	Filipendula ulmaria	100
Limnodrilus hoffmeisteri	100	Psychomyia pusilla	100	Cymbella helvetica	100	Fissidens	100
Spirosperma ferox	100	Cheumatopsyche lepida	100	Cymbella silesiaca	100	Fontinalis antipyretica	100
Tubifex ignotus	100	Hydropsyche siltalai	100	Diatoma tenuis	100	Hygrohypnum	100
Stylaria lacustris	100	Hydropsyche angustipennis	100	Diatoma vulgaris	100	Juncus articulatus	100
Lumbricidae indet.	100	Hydropsyche pellucidula	100	Eunotia bilunaris	100	Juncus inflexus	100
Nematoda indet.	100	Hydropsyche contubernalis	100	Fragilaria capucina	100	Lythrum salicaria	100
Glossiphonia complanata	100	Glossosoma spp.	100	Fragilaria capucina var. vaucheriae	100	Mentha aquatica	100
Helobdella stagnalis	100	Goera pilosa	100	Gomphonema minutum	100	Persicaria amphibia	100
Erpobdella octoculata	100	Ithytrichia spp.	100	Gomphonema olivaceum	100	Phalaris arundinacea	100
Gammarus duebeni	100	Lepidostoma hirtum	100	Gomphonema parvulum	100	Potamogeton pectinatus	100
Asellus aquaticus	100	Lasiocephala basalis	100	Hannea arcus	100	Potamogeton perfoliatus	100
, Hydracarina indet.	100	Athripsodes cinereus	100	Meridion circulare	100	Potamogeton pusillus	100
Serratella ignita	100	Drusus annulatus	100	Meridion circulare var. constrictum	100	Rhynchostegium ripariodes	100
Baetis scambus	100	Halesus radiatus	100	Navicula cryptocephala	100	Riccia	100
Baetis rhodani	100	Limnephilus lunatus	100	Navicula cryptotenella	100	Schoenoplectus lacustris	100
Baetis atrebatinus	100	Stenophylax permistus	100	Navicula gregaria	100	Senecio palustre	100
Baetis muticus	100	Sericostoma personatum	100	Navicula halophila	100	Valeriana	100
Centroptilum luteolum	100	Dicranota spp.	100	Navicula lanceolata	100		
Rhithrogena semicolorata	100	Antocha spp.	100	Navicula tripunctata	100		
Heptagenia sulphurea	100	Ceratopogonidae indet.	100	, Nitzschia dissipata	100		
Ecdyonurus venosus	100	Limnophora spp.	100	Nitzschia palea	100		
Ecdyonurus insignis	100	Hemerodromia spp.	100	Rhoicosphenia abbreviata	100		
Ephemera danica	100	Wiedemannia/Clinocera spp.	100	Surirella angusta	100		
Caenis luctuosa	100	Chelifera spp.	100	Surirella brebissonii	100		
Caenis rivulorum	100	Simulium ornatum/ intermedium/trifasciatum group	100	Synedra ulna	100		
Amphinemura sulcicollis	100	Simulium ornatum/intermedium group	100	Unidentified	100		
Nemoura avicularis	100	Tanypodinae indet.	100				
Protonemura meyeri	100	Prodiamesinae indet.	100				
Leuctra hippopus	100	Orthocladiinae indet.	100				
Leuctra inermis	100	Chironominae indet.	100				
Perla bipunctata	100						
Siphonoperla torrentium	100						
Calopteryx splendens	100						
Velia spp.	100						
Aphelocheirus aestivalis	100						
	100						
Callicorixa praeusta							
Esolus parallelepipedus	100						
Elmis aenea	100						

River Type 32 (3 sites).

Macroinvertebrates	% freq	Macroinvertebrates contd.	% freq	Macroinvertebrates contd.	% freq
Pisidium casertanum	100	Caenis rivulorum	67	Velia caprai	33
Tubificidae indet.	100	Brachyptera risi	67	Nepa cinerea	33
Lumbricidae indet.	100	Amphinemura sulcicollis	67	Hesperocorixa sahlbergi	33
Erpobdella octoculata	100	Leuctra inermis	67	Gyrinus substriatus	33
Gammarus duebeni	100	Siphonoperla torrentium	67	Brychius elevatus	33
Serratella ignita	100	Hydraena gracilis	67	Hydroporus tessellatus	33
Baetis rhodani	100	Hydrocyphon spp.	67	Oreodytes sanmarkii	33
Baetis muticus	100	Wormaldia spp.	67	Oreodytes septentrionalis	33
Ecdyonurus venosus	100	Plectrocnemia conspersa	67	Stictotarsus duodecimpustulatus	33
Protonemura meyeri	100	Polycentropus kingi	67	Agabus spp.	33
Leuctra hippopus	100	Psychomyia pusilla	67	Nebrioporus depressus elegans	33
Isoperla grammatica	100	Lype reducta	67	Helophorus spp.	33
Esolus parallelepipedus	100	<i>Agapetus</i> spp.	67	Sialis lutaria	33
Elmis aenea	100	Hydroptila spp.	67	Rhyacophila munda	33
Oulimnius tuberculatus	100	Chaetopteryx villosa	67	Polycentropus irrorata	33
Limnius volckmari	100	Halesus digitatus	67	Metalype fragilis	33
Orectochilus villosus	100	Potamophylax cingulatus	67	Lype phaeopa	33
Elodes spp.	100	Tipula spp.	67	Hydropsyche instabilis	33
Rhyacophila dorsalis	100	Dixa nebulosa	67	Hydropsyche pellucidula	33
Polycentropus flavomaculatus	100	Wiedemannia spp.	67	Glossosoma spp.	33
Hydropsyche siltalai	100	Simulium ornatum/intermedium/trifasciatum group	67	Goera pilosa	33
Silo pallipes	100	Ancylus fluviatilis	33	Silo nigricornis	33
Ithytrichia spp.	100	Planorbis planorbis	33	Lepidostoma hirtum	33
Halesus radiatus	100	Bathyomphalus contortus	33	Lasiocephala basalis	33
Sericostoma personatum	100	Lymnaea palustris	33	Athripsodes spp.	33
Odontocerum albicorne	100	Lymnaea truncatula	33	Drusus annulatus	33
Dicranota spp.	100	Physa fontinalis	33	Ecclisopteryx guttulata	33
Eloeophila spp.	100	Aplexa hypnorum	33	Limnephilus lunatus	33
Psychodidae indet.	100	Pisidium milium	33	Limnephilus marmoratus	33
Limnophora spp.	100	Pisidium nitidum	33	Potamophylax latipennis	33
Hemerodromia spp.	100	Pisidium subtruncatum	33	Beraea maurus	33
Chelifera spp.	100	Stylodrilus heringianus	33	Pedicia spp.	33
Simulium argyreatum/variegatum group	100	Rhyacodrilus coccineus	33	Tricyphona spp.	33
Tanypodinae indet.	100	Spirosperma ferox	33	Pilaria spp.	33
Orthocladiinae indet.	100	Gordius spp.	33	Antocha spp.	33
Chironominae indet.	100	Glossiphonia complanata	33	Erioptera spp.	33
Tricladidia indet.	67	Asellus aquaticus	33	Ceratopogonidae indet.	33
Potamopyrgus antipodarum	67	Asellus meridianus	33	Syrphidae indet.	33
Lymnaea peregra	67	Hydracarina indet.	33	Simulium angustitarse	33
Pisidium pulchellum	67	Baetis scambus	33	Simulium angustitarse	33
	67	Heptagenia sulphurea	33	Simulium armoricanum	33
Lumbriculus variegatus	67		33		33
Enchytraeidae indet.	67	Electrogena lateralis Paralentonblebia cincta	33	Simulium ornatum/intermedium group	33
	67	Paraleptophlebia cincta Caenis luctuosa	33 33	Simulium argyreatum	33
Helobdella stagnalis				Simulium variegatum	
Piscicola geometra	67	Nemoura cinerea	33	Prodiamesinae indet.	33
Haemopis sanguisuga	67	Perla bipunctata	33		
Centroptilum luteolum	67	Dinocras cephalotes	33		
Rhithrogena semicolorata	67	Chloroperla tripunctata	33		
Ecdyonurus insignis	67	Calopteryx virgo	33		
Leptophlebidae indet.	67	Coenagrionidae indet.	33		

River Type 32 contd.

Phytobenthos	% freq	Phytobenthos contd.	% freq	Macrophytes	% freq
Achnanthidium minutissimum	100	Spirogyra W1	33	Angelica sylvestris	100
Amphora pediculus	100	Ulothrix zonata	33	Apium nodiflorum	100
Cocconeis placentula	100			Filipendula ulmaria	100
Cymbella minuta	100			Fontinalis antipyretica	100
Gongrosira sp.	100			Juncus articulatus	100
Reimeria sinuata	100			Rorippa nasturtium-aquaticum	100
Achnanthes lanceolata	67			Veronica beccabunga	100
Achnanthidium biasolettiana	67			Amblystegium riparium	67
Audouinella hermannii	67			Caltha palustris	67
Cladophora glomerata	67			Cladophora spp.	67
Cymbella silesiaca	67			Conocephalum conicum	67
Diatoma moniliformis	67			Hypericum tetrapterum	67
Fragilaria capucina	67			Mentha aquatica	67
Gomphonema angustum	67			Rhynchostegium ripariodes	67
Gomphonema olivaceum	67			Thamnobryum	67
Hildenbrandia rivularis	67			Valeriana	67
Navicula cryptotenella	67			Brachythecium rivulare	33
Navicula gregaria	67			Butomus umbellatus	33
Navicula lanceolata	67			Callitriche obtusangula	33
Nitzschia dissipata	67			Callitriche platycarpa	33
Rhoicosphenia abbreviata	67			Chara	33
Synedra ulna	67			Chiloscyphus polyanthos	33
Achnanthes flexella	33			Cinclidotus fontinaloides	33
Achnanthes oblongella	33			Dicranella palustris	33
Brachysira vitrea	33			Equisetum arvense	33
Chamaesiphon confervicolus	33			Equisetum fluviatile	33
Cocconeis pediculus	33			, Filamentous green algae	33
Cymbella affinis	33			Globular algae	33
Cymbella helvetica	33			Glyceria fluitans	33
Cymbella microcephala	33			Hygrohypnum	33
Diatoma tenuis	33			Iris pseudacorus	33
Dichothrix gypsophila	33			, Juncus effusus	33
Fragilaria capucina var. vaucheriae	33			Juncus inflexus	33
Gomphonema acuminatum	33			Jungermannia	33
Gomphonema minutum	33			Lemna minor	33
Gomphonema parvulum	33			Lemna trisulca	33
Heribaudiella fluviatilis	33			Lythrum salicaria	33
Lyngbya martensiana	33			Myosotis scorpioides	33
Lyngbya manensiana Meridion circulare	33			Pellia endiviifolia	33
Meridion circulare var. constrictum	33			Pellia epiphylla	33
Microspora irregularis	33			Petasites hybridus	33
Mougeotia W4	33			Phalaris arundinacea	33
Nougeolia vv4 Navicula cryptocephala	33			Philonotis fontana	33
	33				33
Navicula halophila Navicula tripupctata	33			Plagiomnium rostratum	33
Navicula tripunctata				Plagiomnium undulatum	
Nitzschia fonticola	33			Potamogeton lanceolatus	33
Nitzschia palea	33			Ranunculus flammula	33
Oscillatoria brevis	33 33			Rorippa amphibia	33